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ABSTRACT

Magnetic Confinement of an Ultracold Neutral Plasma

by

Grant Gorman

Ultracold neutral plasmas (UCNPs), created by the photoionization of a cold gas,

have proven to be an excellent platform for studying plasmas in far more complex

environments. Through their ultracold temperatures and dilute densities, UCNPs

occupy an exotic regime of plasma physics where the Coulomb energy between neigh-

boring ions exceeds the average thermal energy. Under such conditions of strong

coupling, they display a rich assortment of physical phenomena in regimes that are

challenging to model theoretically. The application of modern atomic physics tech-

niques provides powerful diagnostics and a high level of control over the ion density,

velocity, and internal-state distributions. This allows UCNPs to be sculpted in ways

that induce and isolate a wide variety of phenomena, and makes these systems ideal

for studies of fundamental plasma physics.

Over the last two decades, UCNPs have been on the forefront of experimental

study of strongly coupled plasmas, however, recently there has been emerging inter-

est in plasmas that are both magnetized and strongly coupled because the combined

effects challenge our understanding of plasma equilibration and transport. Strong

coupling introduces short-range spatial correlations between particles that invalidate

closure schemes used to derive plasma kinetic equations, while strong magnetiza-

tion frustrates the use of conventional collision operators because particle gyromotion



occurs on length scales relevant for collisions. In recent years, great progress has

been made to develop kinetic theories that accurately describe plasmas in asymptotic

regimes of either strong coupling or magnetization, but how these regimes merge is

still an open question.

UCNPs occupy an interesting regime of density and temperature that makes them

uniquely suited for the study of plasmas at the intersection of Coulomb coupling and

magnetization. Despite this fact, rather few experiments have been conducted on

UCNPs in external magnetic fields. This thesis describes the magnetic confinement

of an ultracold neutral plasma created at the null of a biconic cusp (or quadrupole)

magnetic field. This work utilized Doppler-sensitive laser-induced-fluorescence (LIF)

images of the ions. LIF has long been used to probe the ions in UCNPs, but non-

uniform magnetic fields complicate LIF due to the spatially varying Zeeman shifts and

quantization axis of the ions. This thesis describes the development of a quantitative

model of LIF imaging in a non-uniform magnetic field, which uses velocity-resolved

rate equations to describe the transfer of ion population due to photon scatter and

spontaneous emission. This probe also offers the new ability to measure the electron-

spin polarization of the ions, which is inherited from the precursor atoms during

photoionization, and should open new possibilities for studying plasma diffusion.

The magnetization and confinement of ultracold plasmas promises an open frontier

for the UCNP research field. UCNPs confined within biconic cusp fields offer a

platform for studying plasmas with changing length scales and dominant physical

processes. Beyond fundamental interest, magnetic confinement should circumvent

the limitations that the rapid plasma expansion imposes on laser cooling of the ions

in a UCNP and magneto-optical forces should enhance plasma confinement, helping

stretch the boundaries of Coulomb coupling strength available in UCNP experiments.
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Chapter 1

Introduction

Systems of charged particles, otherwise known as plasmas, are ubiquitous throughout

the universe. Plasmas in nature tend to be hot because they are formed by the

collisional ionization of neutral atoms or molecules, requiring temperatures ∼ 1 eV for

collisions to be strong enough to liberate bound electrons. At lower temperatures, the

plasma state is typically not stable because charged particles recombine into neutral

atoms or molecules via a process called three-body recombination (TBR). However,

ultracold neutral plasmas (UCNPs), formed in a laboratory by the photoionization of

a cold gas [1], are an exception to these generalizations, and they are even colder than

astrophysical plasmas formed in cold molecular clouds [2]. UCNPs occupy an exotic

regime of plasma physics with ultracold ion temperatures ∼ 1K, tunable electron

temperatures ranging from 1 − 1000K, and relatively dilute densities ranging from

106 − 1012 cm−3 [3].

One important feature of UCNPs is that they are strongly coupled. The cou-

pling strength of a plasma is characterized by the Coulomb coupling parameter,

Γ = Ec/kBT . A plasma is considered strongly coupled when the average Coulomb

energy between neighboring ions (Ec = e2/4πǫ0a, where a = (3/4πn)1/3 is the average

interparticle spacing) exceeds the average thermal energy (kBT ). In the strongly cou-

pled regime, the microscopic collisional processes that determine macroscopic trans-

port and equilibration are difficult to describe theoretically due to the development of

strong, short-range correlations that are not captured by traditional plasma kinetic
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theory.

UCNPs have been on the forefront of experimental study of strongly coupled

plasmas (SCPs) since their first experimental realization in 1999 [1] because of their

well-controlled initial conditions and precise diagnostics. Most experiments to date

have studied UCNPs in the absence of external magnetic fields. However, there has

been emerging interest in magnetized and strongly coupled plasmas in general [4, 5, 6]

and in the ultracold regime [5, 7, 8], driven in large part by new experimental capa-

bilities in dusty [9, 10, 11] and laser-produced high-energy density (HEDP) plasmas

[12, 13], but is also important in astrophysical systems such as white dwarf [14, 15]

and neutron [16, 17] stars. The combined effects of magnetization and strong coupling

modify collisional and transport phenomena in ways that are challenging to model

theoretically [8, 18, 19], but recent developments suggest that a unified theory that

bridges the gap between these two regimes is just over the horizon [20, 21].

The extension of the UCNP platform to probe plasmas in overlapping regimes of

magnetization and strong coupling is important for the discovery of new phenomena

and to aid the development of new theoretical and numerical models. This thesis

describes our first efforts towards this end: the magnetic confinement of a UCNP cre-

ated at the null of a biconic cusp (or quadrupole) magnetic field. The confinement was

demonstrated using planar LIF images of the ions, which required the development

of a quantitative model for LIF in the presence of non-uniform magnetic fields. An

interesting byproduct of this model is the ability to measure the long-lived electron-

spin polarization that the ions inherit from the precursor atoms, and this newfound

ability should open new avenues for studying plasma flow and diffusion.
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1.1 Ultracold Neutral Plasmas

UCNPs are formed by photoionizing a cold gas of atoms or molecules near the ioniza-

tion threshold. They were first created in 1999 by photoionizing a laser-cooled gas of

metastable Xe atoms in a magneto-optical trap (MOT) above threshold [1] and have

subsequently been created this way using atomic gases of Rb [22, 23, 24], Ca [25],

Yb [26], and Sr [27]. UCNPs have also been created by exciting atoms [28, 29, 30] or

molecules [31] to highly excited Rydberg states that subsequently collisionally ionize

into a plasma. For molecular UCNPs, the precursor cold gas is formed by seeding

molecules in a supersonic molecular beam. In this thesis, we create UCNPs by singly

ionizing a cold gas of laser-cooled, magnetically trapped 88Sr atoms just above the

ionization threshold using a 10-ns pulsed dye laser (to be discussed in more detail in

Chap. 2).

Alkaline-earth atoms are well-suited for UCNP experiments because a single va-

lence electron remains following photoionization, providing a relatively simple Alkali-

like level structure with optically accessible electronic transitions. 88Sr+ in particular

lacks nuclear spin, so its level structure is further simplified by the absence of a hy-

perfine structure. The ability for the ions to interact with laser light forms the basis

for the ability to laser cool the ions [32], diagnostics such as absorption [27] and

fluorescence [33] imaging, and spin tagging techniques for studies of transport and

equilibration [34].

The dynamics of ultracold plasmas following photoionization have been discussed

in detail in review articles [3, 35] and theses [36, 37, 38]. The following discussion

is intended to provide a brief overview of the important properties of UCNPs and

their evolution. Immediately after photoionization, the electrons and ions inherit the

density distribution (n) of the precursor atoms, which is typically either a spherically
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symmetric Gaussian distribution for atoms in a MOT [39] or an exponentially decay-

ing distribution for atoms in a quadrupole magnetic trap [40]. The ions are created

with extremely low kinetic energy, close to the temperature of the precursor atoms,

but they possess significant excess electrical potential energy due to their initially

uncorrelated state and undergo a process called disorder-induced heating (DIH) in

the first few 100 ns, resulting in ion temperatures Ti ∼ 1K [41]. Due to the extremely

small electron-ion mass ratio (10−6), essentially all of the excess photoionization en-

ergy is converted into electron thermal energy. Thus, the initial electron temperature

(Te) can be tuned with the wavelength of the photoionization laser and is typically

set between 1 − 1000K, although there are external factors that limit the practical

range for setting Te. Lower electron temperatures are generally desired to ensure hy-

drodynamic conditions, higher plasma neutrality, and slower plasma expansion, but

needs to be sufficiently high to avoid three-body recombination into neutral atoms.

TBR occurs when two electrons and an ion collide inelastically to form a Rydberg

atom and an energetic electron, which carries away the Rydberg binding energy. This

process results in depletion of the plasma density and heating of the electrons and

occurs with rate

RTBR = KTBRn
2T−9/2e = 7.28Γ9/2

e ωpi, (1.1)

where KTBR = 2.77 × 10−9 K9/2cm6s−1 [42] and ωpi =
√

ne2/miǫ0 is the ion plasma

oscillation frequency. Measurement of the TBR rate has been used as a probe of elec-

tron temperature in a UCNP previously [43], but three-body recombination is gener-

ally detrimental to UCNP experiments because the depletion can become prominent

enough to limit the plasma lifetime, resulting in anomalous changes of n and Te that

can obscure phenomena of interest. Avoiding TBR is particularly important for ex-

periments that do not probe the electrons directly because changes in Te would not
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be observable. The scaling of RTBR with ωpi imposes a general restriction of Γe . 0.1

for experiments seeking to resolve ion dynamics, but this criteria can vary depending

on the phenomenon of interest.

The time evolution of UCNPs can generally be broken down in three separate

stages: electron equilibration, ion equilibration, and plasma expansion into the sur-

rounding vacuum (Fig. 1.1). Another consequence of the small electron-ion mass ratio

is the separation of the electron and ion equilibration timescales, which are closely

related to their corresponding plasma oscillation frequency

ωps =

√

ne2

msǫ0
, (1.2)

where ms is the mass of species s = e, i. For typical experimental conditions, ω−1pe ≈

1 ns and ω−1pi ≈ 1µs. On a much longer timescale, gradients in the electron thermal

pressure drive plasma expansion into the surrounding vacuum with a characteristic

hydrodynamic timescale of

τexp =

√

miσ(0)2

kBTe(0)
, (1.3)

where σ(0) is the initial rms plasma size [39].

During the electron equilibration phase, the electrons equipartition the excess

energy above photoionization to reach thermal equilibrium in a few 100 ns [44].

Throughout this process, hot electrons are able to escape from the plasma. How-

ever, as electrons escape, a potential well develops as a result of the growing net

positive charge in the plasma that will eventually be sufficient to trap the remaining

electrons. This process is known as ionic space-charge trapping and the fraction of

captured electrons is given phenomenologically by

Ne

Ni

= 1−
√

N⋆

Ni

, (1.4)
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Figure 1.1 : Schematic showing the separation of fundamental timescales in a UCNP.
Electron equilibration (left) occurs on the fastest timescale, during which the electrons
become space-charge trapped by the potential of the ions. Ion equilibration then
occurs, which sees the ions heat to Ti ≈ 1K due to DIH. Following the equilibration
of both species, the plasma expands into the surrounding vacuum due to gradients in
the electron thermal pressure.

where N⋆ = Eth/
∫

V (r)n(~r)dV is the number of ions with density distribution n(~r)

that are required to trap a single electron with energy Eth = 3kBTe/2 through the

Coulomb potential V (r) = e2/4πǫ0r [45]. For a plasma density distribution with rms

width σ,

N⋆ = C
6πǫ0σ

e2
kBTe, (1.5)

where C depends on the geometry of the density distribution. Eqs. 1.4 and 1.5 have

been verified experimentally for a spherically symmetric Gaussian distribution, for

which C =
√

π/2 [45]. For typical experimental conditions, the vast majority of the

electrons are trapped and the plasma is highly neutral. The plasmas described here

are created by photoionizing atoms from a quadrupole magnetic trap and begin with

an exponentially decaying density distribution (Eq. 2.8), for which C ≈ 1.65. For a

UCNP created in a quadrupole trap with peak density 109 cm−3, initial rms size of

1mm, and Te(0) = 20K, 98.4% of the electrons are trapped.
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The initial ion equilibration is markedly different from that of the electrons. Im-

mediately after photoionization, the ion temperature and spatial distribution are close

to that of the precursor atoms. For typical UCNP densities, this would result in a very

strongly coupled system with Γi & 100. However, the ion positions are completely

uncorrelated and there is significant excess potential energy in the system compared

to one with equilibrium levels of spatial correlations that would nominally prevent

ions from being close to one another. As a result, the ions undergo disorder-induced

heating, where the excess energy is equipartitioned to thermal energy on a timescale

of ω−1pi to reach an equilibrium temperature of

TDIH =
2

3kB
Ec

∣

∣

∣
Ũ +

κ

2

∣

∣

∣
, (1.6)

where Ũ is the excess particle energy in units of Ec and κ = a/λD is the plasma

screening parameter for electron Debye length λD =
√

ǫ0kBTe/ne2. Ũ can be deter-

mined from tabulated values from [46]. During DIH, there is a rapid initial rise of

the ion temperature that overshoots the equilibrium value and causes the system to

undergo kinetic energy oscillations (Fig. 1.2), which are a characteristic of strongly

coupled systems. The equilibrium ion temperature following DIH can range from

TDIH ≈ 0.25− 3K for typical UCNP initial conditions.

The longest of these timescales is that associated with the expansion of UCNPs,

which is driven by electron thermal pressure and results in electron thermal energy

being converted into directed ion motion. The expansion process can be viewed from

the perspective of ambipolar diffusion, where the electrons and ions diffuse together

at the ion acoustic velocity, vs ≈
√

kBTe/mi. Using a two-fluid treatment of the

plasma, simple hydrodynamic arguments show that the acceleration of the ions is
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Figure 1.2 : Disorder-induced heating and kinetic energy oscillations in a UCNP
with Te = 440K. Immediately after photoionization, the ions are very cold with
temperatures near that of the precursor atoms. The ions subsequently heat rapidly
in the first few 100 ns as excess potential energy is converted to thermal energy.
The ion temperature overshoots the equilibrium value and undergoes kinetic energy
oscillations. The equilibrium ion temperature following DIH can range from TDIH =
0.25 − 3K for typical UCNP initial conditions. The legend indicates the plasma
screening parameter (κ) and number density (n). Adapted from [41]. Copyright 2016
by the American Physical Society.

given by

~̇v = −kBTe
mi

∇n
n
, (1.7)

where ~v is the hydrodynamic flow velocity of the plasma, the electron thermal pressure

is given by the ideal gas equation of state, P = nkBTe (valid for weakly coupled

electrons), and Te is assumed uniform [47]. This implies that the timescale for the

expansion is given by

τ ≈ vs
v̇

≈ − n

∇n

√

mi

kBTe
, (1.8)

which is on the order of 10s of microseconds and sets the lifetime of the plasma. τexp is
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typically much longer than the ion/electron thermalization timescales, and as a result

both species are considered in local thermal equilibrium (LTE) at the beginning of

the expansion process.

The exact nature of the expansion depends on the geometry of the initial density

distribution. In the special case of a quasi-neutral plasma (ne ≈ ni) where the ions

and electrons both maintain their own global thermal equilibrium and inelastic pro-

cesses and electron-ion thermalization can be neglected, a plasma with a spherically

symmetric Gaussian density distribution (Eq. 2.7), which occurs for UCNPs created

by photoionizing atoms in a MOT [39] or atoms from a magnetic trap after ballistic

expansion [36], realize a particular solution to the Vlasov equation where the plasma

expansion is both adiabatic and self-similar, as described by the following set of rate

equations:

∂

∂t
σ2 = 2γσ2 (1.9)

∂

∂t
γ =

kBTe + kBTi
miσ2

− γ2 (1.10)

∂

∂t
(kBTs) = −2γkBTs, (1.11)

where σ is the initial rms width of the density distribution, γ characterizes the local

mean of the velocity distribution, and the last equation applies to both the electrons

and ions. The self-similarity of the expansion arises because the gradient in the

thermal pressure leads to a radial ion acceleration (i.e., ~v ∝ ~r)

In addition to the conserved total energy Etot = 3
2
NikB(Te + Ti) +

3
2
Nimiγ

2σ2,

Eqs. 1.9−1.11 possess the integrals of motion σ2Ts =const, reflecting the adiabatic

cooling of both the electrons and ions during the plasma expansion [3]. These integrals
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of motion can be used to derive the following simple set of analytic solutions

σ(t) = σ(0)
√

1 + t2/τ 2exp (1.12)

γ(t) =
t/τ 2exp

1 + t2/τ 2exp
(1.13)

Ti(t) =
Ti(0)

1 + t2/τ 2exp
(1.14)

Te(t) =
Te(0)

1 + t2/τ 2exp
. (1.15)

The characteristic expansion time is given by

τexp =

√

miσ(0)2

kB(Te(0) + Ti(0))
(1.16)

and the hydrodynamic expansion velocity, which is the local mean velocity of the

ions, is

~v(~r, t) = γ(t)~r. (1.17)

The rate equations in Eqs. 1.9-1.11 are amenable to extensions that do not impact

the self-similar nature of the expansion, which arises from the geometry of the density

distribution. In [48], a hybrid kinetic and molecular-dynamic model was developed to

incorporate the effects of correlations between the ions. This model provided a basis

for further extensions, such as in [49] to include thermalization between the electrons

and ions and most recently in [32] to treat laser cooling of the ions.

Recent UCNP experiments have transitioned to create the plasma by photoioniz-

ing atoms within a quadrupole magnetic trap [32, 50, 40], which have an exponentially

decaying density distribution. One benefit of a purely magnetic trap is that signifi-

cantly more atoms can be loaded compared to a magneto-optical trap. As a result,

UCNPs can be created with larger initial plasma size without sacrificing plasma den-

sity and, therefore, with longer lifetimes. This was a crucial development for the first



11

demonstration of laser cooling of ions in a neutral plasma [32], for which the plasma

lifetime was the limiting factor for the time available for laser cooling.

The expansion of a UCNP with an exponentially decaying density distribution can

generally be characterized with the same length (σ) and time (τexp) scales as their

Gaussian counterparts, but the expansion is not self-similar and these scaling factors

are only valid for short times after photoionization (t . 2τexp) [40]. The dynamics

also differ early in the expansion due to the sharply peaked cusp at the plasma center,

where excess ion kinetic energy is observed following DIH. This deviation is likely due

to local non-neutrality at early times and increases with the ratio of the electron mean

free path to the length scale of the cusp. For lower electron temperature (Te ≈ 20K)

and higher plasma density (n ≈ 109 cm−3), kinetic effects are expected to be minimal,

resulting in largely hydrodynamic conditions.

1.2 Connections to Plasmas in Far More Complex Environ-

ments

UCNPs are used to simulate a wide variety of plasmas ranging from fusion devices

to dense astrophysical objects. These systems are generally very hot and exist under

plasma conditions that are unfavorable for experimental study for one reason or an-

other. Many are not able to be probed directly and those that can be, especially those

that are strongly coupled, are complex systems with extremely high densities that re-

sult in experimentally inaccessible ion dynamical timescales, which scale closely with

the inverse ion plasma oscillation frequency. UCNPs, on the other hand, are com-

paratively simple systems with highly controllable initial conditions, direct access via

optical probes, and densities leading to ω−1pi ≈ 1µs.
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It is natural to wonder whether systems with such vastly differing density and

temperature share the same physical properties. The connection between these sys-

tems stems from their mutual relation to the Yukawa one-component plasma (YOCP)

model. The YOCP is commonly used to describe plasmas with one species of interest

(i.e., ions) and another oppositely charged species (i.e., electrons) that provides a

smooth and continuous neutralizing background. In this model, the electrons screen

the ion-ion Coulomb interactions through the Debye-Huckle effect and the resulting

interaction is characterized by a screened, repulsive 1/r potential

Vij(ri, rj) =
U0

rij
e
−

rij

λD , (1.18)

where rij = |~ri − ~rj| is the distance between particles i and j, U0 is a measure of

the interaction strength, and λD is the Debye length. The YOCP is valid when the

neutralizing species is weakly coupled and equilibrates faster than the timescale for ion

motion. The former is typically satisfied for UCNP experiments that operate under

plasma conditions that avoid TBR, for which Γe . 0.1, and the latter is satisfied

because of the small electron-ion mass ratio. The requirement for weak coupling

of the electrons arises because the concept of Debye screening breaks down in the

strongly coupled regime, where there is on average less than one particle per Debye

sphere.

One important aspect of the YOCP is that only two parameters - κ and Γi - are

required to uniquely define the plasma state in equilibrium [46, 41, 51]. This is made

more clear by expressing the Yukawa potential in its natural units for time (ω−1pi ),

length (a), and energy (Ec)

Ṽij(r̃i, r̃j) =
Ũ0

r̃ij
e−κr̃ij , (1.19)

where the tilde indicates that quantities are normalized by the appropriate natural
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unit. The only free parameter in the potential is κ, which is solely dependent on the

initial conditions, and Γi characterizes the kinetic energy of the system. Thus, any two

plasmas characterized by the same value of κ and Γi will display universal behavior in

natural units. This universality was confirmed experimentally using ultracold plasmas

in [41] (Fig. 1.3(right)) and forms the basis for the generalization of experimental

measurements of UCNPs with other systems of interest.

Figure 1.3 : Disorder-induced heating and kinetic energy oscillations in a UCNP with
Te = 440K in real (left) and scaled (right) units. Immediately after photoionization,
the ions are very cold with temperatures near that of the precursor atoms. The ions
subsequently heat rapidly in the first few 100 ns as excess potential energy is converted
to thermal energy, overshooting and oscillating about the equilibrium value. The
legend indicates the plasma screening parameter (κ) and density (n). DIH curves
are shown for plasma density varying over one order of magnitude. In real units,
the temperature evolution varies drastically, but in natural units they collapse onto a
universal curve. Adapted from from [41]. Copyright 2016 by the American Physical
Society.

Through the lens of the Yukawa model, the creation of a UCNP via photoionization

can be thought of as a rapid quench from κ = ∞ (a gas of non-interacting atoms)

to a value of κ set by the initial electron density and temperature. When viewed

this way, it becomes clear that Γi after DIH is solely a function of κ because the
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ions always begin with the same initial conditions (i.e., negligible thermal energy and

spatial correlations). One consequence of this is that ions in UCNP experiments will

equilibrate in a narrow range of Γi = 2 − 5 for practical experimental conditions,

which is just inside the strongly coupled regime [41, 52].

1.3 Excellent Platforms for Discovery

The combination of well-controlled initial conditions and precise diagnostics makes

UCNPs an excellent platform for studies of fundamental plasma physics. Through

control over the laser-cooling and trapping of the precursor atoms and the photoion-

ization laser properties, the plasma density and electron temperature can be tuned

across several orders of magnitude. The recent application of laser cooling/heating to

the ions in a UCNP also allows the level of ion Coulomb coupling to be varied from

Γ = 0.1−11. As a result, UCNPs can access conditions of weak or strong coupling and

offer access to a wide array of plasma conditions that require hydrodynamic [53, 54],

kinetic [53, 48, 55], molecular dynamic [48, 34, 52, 53, 41], and quantum descriptions

[56, 57].

The UCNP platform is extremely versatile, due in part to the high level of con-

trol over the initial plasma density distribution, which is determined by the clean

and highly reproducible density distribution of the precursor atoms and the intensity

pattern of the photoionizing light. It is routine, for example, to trap atomic gases

with Gaussian or exponentially decaying density distributions using magneto-optical

or magnetic traps, respectively, and UCNPs can inherit these distributions directly

by photoionizing the atoms with a uniform laser intensity. The plasma density distri-

bution can also be sculpted through spatial modulation of the ionizing radiation [58]

in ways that excite a variety of phenomena of interest. This technique is very flexible
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and has been used to realize plasma conditions that excite collective wave phenomena,

such as the creation of ion acoustic waves (IAWs) using periodic spatial modulation

onto the density distribution (Fig. 1.4). Studies to date have focused on IAWs in

the linear regime [59, 60], but access to IAWs in the non-linear-dispersion regime of

ion plasma oscillations should be possible by increasing the depth and lowering the

length scale of the density modulation. Ion holes have also been created and studied

in the hydrodynamic [54] and kinetic [55] regimes by creating UCNPs with a planar

central density depletion.

Sculpting of the ion velocity distribution with optical pump-probe techniques has

facilitated studies of Coulomb collision rates in the strongly coupled regime through

the establishment of non-equilibrium velocity distributions. These experiments use

counter-propagating beams of circularly polarized light to optically pump ions from

one electronic ground state to another in a velocity-selective manner, resulting in

skewed velocity distributions for the respective ground states that can be separately

monitored using circularly polarized laser-induced-fluorescence imaging [61]. This

technique was used in the first measurements of thermalization rates in strongly

coupled UCNPs [34], and with improved time resolution it allowed for experimental

measurement of the ion-velocity autocorrelation function and, thus, the self-diffusion

constant [62]. These measurements provided important benchmarks for numerical

models and kinetic theories attempting to capture the effect of strong coupling on

collisional processes [63, 64].

1.4 Understanding Collisional Effects on Plasma Transport

A fundamental characteristic of plasmas is that their properties are influenced by

magnetic fields at both the microscopic (collisional) and macroscopic (fluid) scale.
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Figure 1.4 : Ion acoustic waves in an ultracold neutral plasma. (a) A small periodic
density perturbation is imprinted onto the plasma by using a spatial mask on the
ionizing radiation. (b) Laser-induced-fluorescence images of the initial plasma density
distribution and (c) the evolution of the ion acoustic waves. Reused with permission
from [59]. Copyright 2010 by the American Physical Society.

Consequently, magnetic fields can be used to control the transport of particles, energy,

and momentum in plasmas, and this ability forms the basis for many experimental

applications ranging from fusion devices to charged particle confinement. Most plas-

mas are magnetized in the sense that they exist within externally generated magnetic

fields, but quantifying the strength of magnetization involves comparing the thermal

gyroradius (ρ =
√
mkBT/eB) to the characteristic length scale of the physical pro-
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Figure 1.5 : Measurement of velocity relaxation using optical pump-probe techniques.
(left) Two counter-propagating, cross-polarized laser beams optically pump the ions
such that the velocity distribution of each ground state is non-Maxwellian. (right)
Laser-induced-fluorescence measurements in panel (a) are recorded with circularly
polarized imaging light to measure the velocity distribution of ions that occupy the
mj = 1/2 electronic ground state with (red) and without (green) optical pumping
prior to imaging. The velocity distribution obtained by fitting the spectrum is shown
in panel (b) and panel (c) shows the corresponding average velocity as a function of
relaxation time. The left and right panels are adapted from [62] and [34], respectively.

cess being considered. With respect to bulk fluid motion, magnetization is quantified

through the parameter δ = ρ/L, where L sets the length scale for density variation

within the plasma. With respect to collisions dynamics, magnetization is quantified

through the parameter β = λD/ρ because the Debye length sets the cutoff length for

Coulomb interactions in neutral plasmas described by the OCP, although as we will

see shortly, the collision mean free path (λcol), Landau length (λL, i.e. the distance

of closest approach), and the average interparticle spacing (a) are also important for

characterizing varying degrees of magnetization.

The behavior of plasmas in magnetic fields is a tremendously broad and well-

developed subject. Magnetohydrodynamic (MHD) models are often used to describe
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plasmas at the macroscopic scale and incorporate the influence of collisions on trans-

port through a series of non-ideal terms with coefficients that describe processes such

as diffusion, viscosity, and conductivity. Our understanding of plasma transport and

our ability to model plasma dynamics hinge on obtaining accurate estimates of these

coefficients, yet often times we must resort to computationally expensive particle

simulations of the OCP to obtain estimates of these coefficients because conventional

kinetic theories are invalidated by conditions of strong coupling or magnetization.

The development of accurate kinetic theories is important because they shed light

on the physical processes that undergird transport and provide an efficient means for

estimating transport coefficients.

Traditional plasma kinetic theories use kinetic equations that incorporate colli-

sions through a collision operator that is derived by obtaining closure to the Bogoli-

ubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. There are several closure

schemes that are valid for weakly coupled plasmas, but the simplest is that of Boltz-

mann. The Boltzmann equation, which describes binary collisions between particles,

is derived by ignoring triplet correlations between particles and is popular because

of the simplicity with which transport coefficients can be calculated. Once the in-

teraction potential between particles is specified, Chapman-Enskog or Grad theories

can be applied to obtain calculations of transport coefficients. In the case of the

Coulomb potential, typical logarithmic divergences at close distances and due to the

long-range nature of the Coulomb force can be avoided by truncating collision inte-

grals at lengths shorter than the Landau length and longer than the Debye length,

making the calculation of transport coefficients with Boltzmann theories relatively

straightforward.

Unfortunately, traditional kinetic theories are not valid under conditions of strong
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coupling or magnetization, rendering MHD models and our understanding of these

systems incomplete. Each condition presents its own challenge: strong coupling intro-

duces spatial correlations that are ignored to obtain closure of the BBGKY hierarchy

in Boltzmann theories, while strong magnetization complicates collision operators

when particle gyromotion occurs on length scales relevant for collisions. Over the

last decade, great progress has been made to extend Boltzmann-based theories to

capture collisional dynamics in asymptotic regimes of either Coulomb coupling [20]

or magnetization [21].

Boltzmann-based kinetic theories may operate under the binary collision approx-

imation, but they can be extended to conditions where many-body effects are impor-

tant through the introduction of an effective interaction potential that incorporates

the averaged effects of spatial correlations [65, 20]. This concept is similar to ac-

counting for electron screening effects through the use of the Debye-Huckle potential

in place of the bare Coulomb potential. The effective potential - also known as the

potential of mean force - consists of two terms: the bare interaction between two par-

ticles plus a term that uses the pair correlation function to average the effects of other

surrounding particles [65]. Thus, once the pair correlation function is known for a

given interaction potential, the effective potential may be derived and standard tech-

niques can be used to derive transport coefficients. For the YOCP, MD simulations

can be used to derive the pair correlation function, but there are also other avenues

such as the hypernetted chain approximation [66]. This extension is very powerful

because it does not require modification of the framework for the Boltzmann collision

operator - only the interaction potential that is input to it - so it should in principle

be compatible with other changes made to the Boltzmann collision operator that do

not directly modify the interaction potential.
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The primary issue with the Boltzmann collision operator with regards to magne-

tization is that its solutions rely on approximations that ignore changes of particle

trajectory that are not derived from the specified interaction potential [5]. This

presents problems for magnetized plasmas when particle gyromotion is significant

on length scales associated with collisions (the Debye length for the YOCP). Novel

methods have been developed recently to solve the generalized Boltzmann collision

operator for particles colliding in the presence of a uniform magnetic field of arbitrary

strength. This was recently demonstrated through calculations of the friction force

for the YOCP [21], but there is nothing that precludes these methods from using an

arbitrary potential, so the extension to the potential of mean force is promising.

1.5 Characterization of Plasma Magnetization Strength

Recent developments in plasma kinetic theory place us on the cusp of a unified ki-

netic theory that describes plasmas in overlapping regimes of strong coupling and

magnetization. It is important now more than ever for experimental platforms to be

capable of providing benchmarks for these theories. UCNPs happen to be uniquely

suited to study strongly coupled plasmas across the full regime of magnetization of

the Yukawa OCP. In addition to Γ and κ, the magnetized OCP model is charac-

terized by the magnetization strength β = λD/ρ. The influence of magnetic fields

on collisional transport generally increases with β, but identifying specific regimes of

magnetization requires more careful consideration due to its interplay with Coulomb

coupling.

MD simulations of the YOCP were used to identify four distinct regimes of magne-

tization with respect to collisional transport; the following discussion of these regimes

follows closely to the discussion in [5] (Fig. 1.6). The longest length scale that is rele-
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vant for collisions is the collision mean free path λcol, because this sets the cutoff length

for density variation for plasmas in the hydrodynamic regime. A plasma is considered

unmagnetized when ρ > λcol because plasma transport has little to no dependence

on the magnetic field strength. A plasma is generally considered magnetized when

ρ < λcol and occupies the weakly magnetized regime when max (a, λD) < ρ < λcol,

commonly referred to as the Braginskii regime. In this regime, magnetic fields are

strong enough to influence macroscopic transport coefficients, but are weak enough

that gyromotion is negligible during particle collisions. Thus, the magnetic fields are

likely to influence the convection of particles but not the collision operator.

Magnetic fields begin to affect the collision operator in plasma kinetic theo-

ries when ρ < λD and conventional kinetic theories cannot describe this regime.

There are two separate regimes where this occurs: the strongly magnetized regime

(λL < ρ < λD) and the extremely magnetized regime (ρ < min (a, λD, λL) ). In the

strongly magnetized regime, particle diffusion along magnetic field lines and the relax-

ation of anisotropic temperature is relatively unaffected, but diffusion across magnetic

field lines is significantly reduced. In the extremely magnetized regime, transport is

heavily modified as particle motion becomes essentially one dimensional. Cross-axis

thermalization and self-diffusion are generally severely inhibited.

1.6 Magnetization of UCNPs

The magnetization of UCNPs promises an open frontier for the UCNP research field.

UCNPs have highly tunable density and electron temperature, allowing them to access

the full regime of magnetization through the application of modest magnetic fields.

Studies of magnetized UCNPs are of fundamental interest because the interplay of

strong coupling and magnetization influence plasma transport and equilibration pro-
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cesses in ways that are difficult to describe theoretically and because this regime is

important to other experimental applications such as dusty and high-energy density

plasmas.

Beyond fundamental interest, UCNP experiments stand to benefit from magneti-

zation from a practical standpoint. For example, the three-body recombination rate

for magnetized plasmas is reduced by approximately an order of magnitude, which

should allow for UCNPs to be created with lower electron temperatures [67]. Further-

more, disorder-induced heating is significantly decreased under strong magnetization,

where particle motion becomes essentially one dimensional and collisional energy ex-

change in the plane perpendicular to the field line is significantly reduced.

The most important aspect, however, is the influence of magnetic fields on particle

diffusion. Diffusion along magnetic field lines is most significantly impacted under

extreme levels of magnetization, but particle diffusion across magnetic field lines

is significantly reduced for both weakly and strongly magnetized systems [5]. A

pioneering experiment demonstrated this by studying the expansion of a UCNP in

a uniform magnetic field where the ions were weakly magnetized and the electrons

were strongly magnetized [68]. The plasma expansion was found to be unaffected

in the direction of the magnetic field, but the expansion across the field lines was

significantly reduced and the peak fluid velocity was found to scale as B−1/2.

A long standing goal in the field of UCNPs has been stretching the boundaries

of possible Coulomb coupling that can be realized experimentally, which has tradi-

tionally been limited to Γ ≈ 2− 5. Recent experiments applying laser cooling to the

ions in UCNPs has extended this range to Γ = 0.1− 11, but limitations imposed by

the rapid plasma expansion prevented this range from being extended further. The

application of magnetic fields is a natural next step for improving the efficacy of laser
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forces. One reason for this is that spatially dependent magnetic fields can be used

to manipulate the ion resonances in ways that expand the range where cooling is

effective, but another is that magnetic fields in the proper configuration can be used

for particle confinement, which should greatly extend the amount of time available

for laser cooling ions at the field null.

The rest of this thesis is dedicated to describing the work that went into demon-

strating the magnetic confinement of an ultracold neutral plasma created at the null

of a biconic cusp (or quadrupole) magnetic field. Chapter 2 describes the creation of

a UCNP by photoionizing spin-polarized atoms in a quadrupole magnetic trap with

the use of a new pulsed dye laser system. The new laser system is also described in

this chapter, including the use of iodine absorption spectroscopy to calibrate the laser

frequency and the implementation of a multi-pass ionization scheme.

Chapter 3 will discuss the development of a quantitative model for LIF imaging

of a UCNP in the presence of non-uniform external magnetic fields, which is vali-

dated using experimental data. This model uses velocity-resolved rate equations to

account for ion population transfer between states coupled by the LIF laser and spon-

taneous emission to states involved in LIF and states dark to the imaging laser. A

detailed characterization of this model is provided, including the ability to extract

local measurements of plasma density, hydrodynamic flow velocity, ion temperature,

and electron-spin polarization of the ions and its ability to capture pumping into

off-resonant ground states throughout excitation.

Chapter 4 will discuss the time evolution of plasma density and hydrodynamic

flow velocity distributions following plasma creation at the null of a biconic cusp

field. The magnetized plasma evolution can be characterized by ambipolar-diffusion

of a plasma in a magnetic field. Plasma expansion along magnetic fields is largely
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unaffected and leads to ions streaming out of the loss gaps along the symmetry (x)

axis and the y-z plane. Plasma expansion across magnetic field lines is significantly

reduced and long term trapping of these particles is facilitated by magnetic mirror

trapping of the electrons. Chapter 5 discusses the interrelated dynamics of the plasma

density and electron-spin polarization of the ions. Preliminary evidence suggests that

the spin-flip rate in the plasma is low. Under these conditions, the ability to resolve

the polarization could open up new avenues for measuring plasma diffusion.
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Chapter 2

Creation of a UCNP in a Biconic Cusp Field

UCNPs have historically been created by photoionizing atoms from a seeded super-

sonic molecular beam or those trapped in a MOT, which yields a Gaussian plasma

density distribution and a self-similar expansion that can be modeled with simple

hydrodynamic equations [39, 48]. However, recent experiments have transitioned to

photoionize atoms in a quadrupole magnetic trap to take advantage of the larger

number of trapped atoms [32], the potential for confinement via the magnetic mir-

ror effect [50], and the sharply peaked density distribution, which leads to plasma

conditions where kinetic effects can be important [40].

This chapter describes the creation of a UCNP by photoionization of magnetically

trapped atoms in a biconic cusp (or quadrupole) magnetic field. The discussion in this

chapter begins with a review of the quadrupole magnetic field configuration, including

a linear approximation to the field profile that is valid for small distances from the

field null. The laser-cooling and magnetic trapping of metastable 3P2 Sr atoms within

this field configuration is discussed in Sec. 2.2. The magnetically trapped atoms are

photoionized using a new pulsed dye laser in a multi-pass configuration. Sec. 2.3 pro-

vides a full characterization of this system, including measurement of the laser beam

profile and calibration of its frequency using iodine absorption spectroscopy. Finally,

this chapter concludes in Sec. 2.4 with a discussion of the plasma state following

photoionization, including the electron-spin polarization of the ions.
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2.1 Quadrupole Magnetic Fields

The quadrupole magnetic field configuration is formed between two current coils in

the anti-Helmholtz configuration. The coils used in our laboratory consist of many

turns of 4-mm-diameter wire around a cylindrical portion of the vacuum chamber

that is 28mm in diameter. Each coil is ≈ 36mm×28mm in a configuration depicted

in Fig. 2.1. The coils can thus be characterized by a mean coil radius of 30 cm and a

separation of 110 cm along the symmetry (x) axis.
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Figure 2.1 : Experimental schematic for the production of quadrupole magnetic fields
using two sets of coils in the anti-Helmholtz configuration. The circular current loops
are centered on the symmetry (x) axis of the laboratory coordinate system and the
dot positions indicate where the circular current loops intersect the x-y plane (two
dots for each loop: one below and one above the x axis). The dot coloring indicates
current flow into (yellow) and out of (blue) the plane.

The magnetic field profile ( ~Bexp) for the experimental coils in Fig. 2.1 can be

determined by treating the individual wraps of wire as a circular current loop and
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superimposing the respective fields. Simple analytic expressions exist for the magnetic

field generated by a circular current loop [69]. The field components parallel (B‖)

and perpendicular (B⊥) to the symmetry axis can be expressed in terms of complete

integrals of the first (K) and second (E) kind as

B⊥ =
Cx

2α2βρ

[

(a2 + ρ2 + x2)E(k2)− α2K(k2)
]

B‖ =
C

2α2β

[

(a2 − ρ2 − x2)E(k2) + α2K(k2)
]

,

(2.1)

where ρ =
√

y2 + z2 is the distance from the symmetry axis and C = µ0I/π is

the constant of proportionality for current I. The modulus of the elliptic integrals,

k2 = 1 − α2/β2, is characterized by the parameters α2 = a2 + ρ2 + z2 − 2aρ and

β2 = a2 + ρ2 + z2 + 2aρ.

For the work presented in this thesis, we are only interested in the magnetic

field profile at small distances from the field null because the atomic gases trapped

within this configuration have an rms radius of ≈ 1mm and LIF measurements of

the plasma dynamics are only captured within the camera field-of-view defined by

|x|, |y| < 5mm. At such small distances, the following linear approximation to the

field profile is sufficient

~B = B′(−~x+ ~y/2 + ~z/2), (2.2)

where B′ is the linear magnetic field gradient along the symmetry axis for current I.

All of the experimental data presented in this thesis uses I = 80A, for which the field

gradient was determined to be B′ = 151G/cm by fitting the magnetized LIF model

introduced in Chap. 3 to experimental data (Sec. 3.9). Fig. 2.2 plots the magnetic

field amplitude (left) and direction (right) predicted by Eq. 2.2 for these conditions.

The linear field approximation is valid when the distance from the field null is

much smaller than the radius of the coils generating the fields. Fig. 2.3 demonstrates
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Figure 2.2 : Quadrupole magnetic field amplitude (left) and direction (right) near the
field null, as predicted by Eq. 2.2.

this quantitatively by plotting the difference between the field magnitude (left) and

direction (right) of the exact profile given by Eqs. 2.1 and the linear approximation

given by Eq. 2.2. Throughout this thesis, the local field direction will be characterized

by two angles: the angle that ~B subtends from the x-y plane (φ = tan−1 (Bz/Br),

where Br =
√

B2
x + B2

y) and the angle that the projection of the field in the x-y plane

subtends from the y axis, which is given by θ = tan−1(−Bx/By). For |x|, |y| < 5mm,

the field amplitude and direction differ by less than 1G and 1◦, respectively, validating

the use of the linear approximation.

2.2 Magnetic Trapping of Metastable 3P2 Strontium Atoms

This section describes the magnetic trapping of laser-cooled 3P2 strontium atoms

within the quadrupole magnetic fields described in Sec. 2.1. A schematic of the levels

and transitions that are relevant for the atom trapping and subsequent photoioniza-

tion is provided in Fig. 2.4. The first step in this process is the laser cooling and
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Figure 2.3 : Validating the linear approximation to the quadrupole magnetic field
profile at distances from the field null that are small compared to the coil radius. The
difference between the field amplitude (left) and direction (right) for the exact (Bexp,
Eq. 2.1) and the linear approximation (Bl, Eq. 2.2) to the quadrupole magnetic field
profile.

confinement of a Zeemann-slowed atomic beam of Sr atoms using a MOT that op-

erates on the principal 5s2 1S0 − 5s5p 1P1 transition at 461 nm. Throughout the laser

cooling process, atoms populate the metastable 5s5p 3P2 state through a weak decay

path: 5s5p 1P1 → 5s4d 1D2 → 5s5p 3P2. Due to their large magnetic moment, low-

field-seeking 3P2 atoms (mj = +2,+1) are then efficiently trapped in the quadrupole

magnetic field of the MOT due to the interaction of the atomic magnetic dipole

moment (~µ) with the local magnetic field given by Eq. 2.2

UB = 〈−~µ · ~B〉 = gjmjµBB
′
√

x2 + y2/4 + z2/4, (2.3)

where gj = 3/2 is the Lande g factor for the 3P2 state and µB is the Bohr magneton.

Magneto-optical trapping of the atoms is a necessary first step, rather than mag-

netic trapping, because strontium atoms in the electronic ground state do not possess

a magnetic moment and the quadrupole fields would be too weak to trap Zeeman-

slowed 3P2 atoms directly. Thus, the laser cooling process serves both to pump the
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Figure 2.4 : Levels and transitions for laser cooling and magnetic trapping of stron-
tium atoms and subsequent photoionization to form a UCNP. The principle transition
at 461 nm is used for the initial laser cooling and magneto-optical trapping of Sr
atoms. UCNPs can be created either by photoionizing 1P1 atoms with a two-photon
sequence (one from the continuous-wave MOT laser and another 412-nm photon from
a pulsed dye laser) or 3P2 atoms using a 322-nm photon from a pulsed dye laser.

the atoms into a magnetically trappable state and to cool them to temperatures that

are suitable for magnetic trapping. A MOT operates using three pairs of red-detuned,

counter-propagating laser beams - one pair for each spatial axis - in conjunction with

with a magnetic field with strength that increases with distance from a central field

null. The force that the MOT exerts on an atom can be expressed as

~FMOT = −α~v − β~r, (2.4)

where α is the velocity damping rate and β is the strength of a spring-like restoring

force [70]. The first term is responsible for laser cooling of the atoms. For a transition

with natural linewidth γ, a simple expression for the damping rate can be obtained
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in the limit of small Zeeman shift (βx≪ γ) and low velocity (kv ≪ γ):

α = − 8~k2s0∆/γ

(1 + s0 + (2∆/γ)2)2
, (2.5)

where s0 = I/Isat is the saturation parameter for laser intensity I and saturation

intensity Isat, k is the photon wavenumber, and ∆ is the laser detuning from atomic

resonance. The second term in Eq. 2.4 leads to spatial confinement of the atoms when

β > 0. For laser cooling on the 461-nm principle transition with red-detuned light,

the atoms experience a spring-like potential of

UMOT =
4ks0∆µBB

′γ

(γ2 + 4∆2)2
r2 =

1

2
βr2. (2.6)

Despite the quadrupole magnetic field having cylindrical symmetry, the potential

in Eq. 2.6 can be made spherically symmetric by modifying the saturation parameters

for the respective axes. From equilibrium statistical mechanics, the density distribu-

tion for particles in a potential U(r) is n(r) = n0 exp (−U/kBT ). Thus, the density

distribution for the potential in Eq. 2.6 is

n(r) = n0 exp

(

− r2

2σ2

)

, (2.7)

where n0 is the peak number density and σ =
√

kBTa/β is the initial rms plasma size

for atom temperature Ta.

The number of atoms in a MOT saturates when the loading of atoms (i.e., the rate

that atoms enter the trap with sufficiently low velocity) is balanced by loss from the

trap due to collisions with hot background atoms or light-assisted collisions. Under

typical conditions, the number of atoms saturates in 100ms. Compared to other

alkali-metal atoms, a rather large magnetic field gradient of ≈ 100G/cm is required

for the MOT to work effectively due to the large natural linewidth of γMOT/2π =

30.5MHz and the large recoil momentum associated with the principle transition at
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461 nm [71]. As a result, the magnetic fields used in the MOT are strong enough to

trap the laser-cooled atoms that decay to the 3P2 state through the interaction of the

atomic magnetic dipole moment with the magnetic field. The density distribution for

magnetically trapped atoms in the potential of a quadrupole magnetic trap (Eq. 2.3)

is given by

n(~r) = n0 exp

(

−
√

x2 + y2/4 + z2/4

α

)

, (2.8)

where α = kBTa/3µBB
′ characterizes the plasma size along the x axis. In contrast to

the MOT, magnetic traps can be loaded for much longer due to the long-lived nature

of the 3P2 state (∼ 100 s) and, therefore, significantly more atoms can be accumulated.

The primary loss mechanism in a magnetic trap is non-adiabatic motion through the

field null, which causes atom spins to flip to to the anti-trapped state, and the atom

number saturates in ≈ 1 s.

Atoms can be photoionized from either the MOT using a two-photon sequence

consisting of one photon from the continuous wave MOT laser and another from a

pulsed dye laser at 412 nm [3], for which the atom density distribution is a spheri-

cally symmetric Gaussian, or from the 3P2 state using a single photon from a pulsed

dye laser at 322 nm. The UCNPs described in this thesis used the latter method.

Sec. 2.3 discusses the single-photon photoionization process in more detail, including

the installation of a new pulsed dye laser system.

2.3 A Multi-Pass Photoionization Scheme

2.3.1 Installation of a New Pulsed Dye Laser System

The UCNPs described in this thesis were created by photoionizing magnetically

trapped Sr atoms above threshold using a single 322-nm photon from a newly in-
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stalled 10-ns pulsed dye laser system. Fig. 2.5 shows an experimental schematic of

the new laser system, which consists of a ND6000 grating-tunable dye laser that is

pumped by a Surelite II pulsed Nd:YAG laser. The production of 322-nm light begins

with the Surelite II, which operates by pumping Nd doped YAG rods with a high-

voltage Xenon flashlamp using a Q-switch to produce 10-ns pulses of 1064-nm light.

This fundamental beam is then passed through a second-harmonic generating crystal

(SHG) to convert the light to a wavelength of 532 nm and a dichroic mirror is used

to remove any residual 1064-nm light. At normal operation, the Surelite II produces

≈ 250mJ pulses of light.

The pulsed 532-nm YAG beam pumps the dye cells of the ND6000, which are filled

with a solution of methanol and DCM dye. DCM is highly absorptive at 532 nm and

has a wide emission band with a FWHM of ≈ 100 nm that is centered at 635.5 nm,

making it possible to produce 322-nm light by passing the dye output beam through

a SHG crystal. The ND6000 produces 50mJ pulses of 644-nm light with a linewidth

of .08 cm−1 (3.3 pm) using a series of three dye cells that are transversely pumped

by the YAG laser. The first cell is a rectangular Moya oscillator cell, which induces

the dye to lase at a tunable wavelength using frequency-selective feedback from an

adjustable grating.

The oscillator beam is amplified in to successive stages. In each stage, a dye cell is

pumped transversely by the 532-nm pump beam and the oscillator beam stimulates

emission from the excited molecules. The first amplification stage uses a rectangular

dye cell and the second uses a capillary cell, which derives its name from its long and

thin cylindrical nature. The preamplified beam is shaped to be slightly larger than the

5-mm-diameter capillary cell and expanding such that it is truncated upon entering

and exiting the cell. This process ensures the capillary cell is filled uniformly, leading
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Figure 2.5 : Experimental schematic that describes the production of 10-ns pulses of
322-nm light for photoionizing Sr atoms in the 3P2 state. The Surelite II Nd:YAG
pulsed dye laser produces high-energy pulses of light at the fundamental YAG wave-
length of 1064 nm and uses a second-harmonic generating (SHG) crystal to convert
that light to 532 nm (green line). This beam passes through a dichroic to remove
residual 1064-nm light and then pumps DCM dye within the ND6000 pulsed dye
laser system to produce ∼ 50mJ pulses of 644-nm light (red line). The red dye out-
put is then converted to 322 nm using an external SHG and is again cleaned up using
a dichroic mirror. The 322-nm ionization beam is then passed through a 2.5× beam
expander prior to being directed towards the chamber.

to an output beam that is highly collimated and circular with a uniform spatial

distribution. The 644-nm dye laser output is then passed through a final external

SHG crystal to obtain ≈ 10mJ pulses of 322-nm light.

It is often desired for the ionization beam to be large compared to the size of the

precursor atom cloud so that the ions directly inherit the atom density distribution.

For the experiments presented here, the initial atom cloud is ≈ 1mm, so to be safe

we decided to expand the ionization beam from its nominal 5mm size using a beam

expander consisting of lenses with focal lengths −100mm and 250mm. The intensity

distribution is measured using an Ophir SP298 Silicon CCD camera, which has a
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pixel size of 3.69µm and an active area of 5.3mm× 7.1mm. UV radiation is typically

poorly imaged with Silicon-based CCDs and the ionizing beam is too large for the

active area, so a 4× UV image converter, which uses a fluorescent plate to convert the

UV radiation to visible light with 50 um resolution, relays the beam onto the camera

using a telescope. Fig. 2.6 shows the profile of the imaging laser with a 5-mm scale

bar for perspective.

5 mm

Figure 2.6 : Spatial profile of the 322-nm ionization beam.

One unfortunate consequence of the capillary amplification stage is circular diffrac-

tion patterns that arise due to truncation of the preamplifier beam on the capillary

dye cell. The diffraction pattern is considerably more significant on the 644-nm dye

beam (not shown here) with deeper and shorter length modulations compared to the

322-nm beam profile in Fig. 2.6. The diffraction on the ionization beam could be less

significant due to saturation effects in the SHG conversion from 644 nm−322 nm or
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could be obscured by poor resolution in the 4× converter, but either way its existence

is problematic because, if imprinted onto the plasma density distribution, could induce

ion acoustic waves that heat the plasma [60]. This anomalous heating could limit the

initial strength of Coulomb coupling in the plasma, but could also be problematic, for

example, when using measurements of DIH in a UCNP as an absolute calibration of

plasma density [41]. In the next section, a multi-pass ionization scheme is introduced,

which should help mitigate the impact of the diffraction pattern through saturation

of the ionization fraction.

2.3.2 Implementation of a Multi-Pass Ionization Scheme

The photoionization laser ionizes the atoms in a series of eight consecutive passes

through the vacuum chamber, as depicted in Fig. 2.7, which provides a realistic model

of the chamber with optical paths that are approximately to scale. This multi-pass

ionization scheme is implemented through manipulation of the laser polarization to

allow for several retro-reflections of the laser beam. The beam path begins in the up-

per left-hand side of Fig. 2.7 with the laser passing through a half-wave retardation

(λ/2) plate that is rotated to maximize transmission through a polarization beam-

splitting (PBS) cube. The beam then reflects off of mirrors M1-M3 to make two

consecutive passes through the chamber and is then retro-reflected by mirror M4 to

make two additional passes.

A quarter-wave retardation (λ/4) plate is attached to mirror M4, imparting a 90◦

phase shift to the laser polarization during retro-reflection. Following the first four

passes through the chamber, the beam arrives back at the PBS cube, but this time

is reflected by the cube due to the phase shift on the laser polarization. The beam

is directed towards a second retro-reflecting mirror (M5) that directs the beam back
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onto its original path to complete an additional four passes through the chamber.

Upon returning to the PBS cube for a second time, the laser polarization now has a

cumulative 180◦ phase shift and transmits through the cube.

M1

M2M3

M4M5

PBS

/4

/2

Figure 2.7 : Multi-pass ionization scheme. The pulsed 322-nm laser ionizes the atoms
through a series of eight consecutive passes through the vacuum chamber, which
is facilitated by polarization-selective retro-reflecting of the laser beam through four
windows in the chamber using a polarization beamsplitting (PBS) cube and a quarter-
wave (λ/4) retardation plate.

Recycling of the photoionization energy through the multi-pass scheme is generally

helpful because it will increase the number of ions in the plasma, and along with it

the plasma density and signal-to-noise ratio, but the primary benefit is that it will

mitigate the impact of the diffraction patterns on the laser beam through saturation

of the ionization fraction. The ionization fraction can be expressed in terms of the
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beam energy density ǫ and the ionization cross section σi as

Ni/Na = 1− exp

(

−ǫσi
Ep

)

, (2.9)

where Ep = hc/λp is the photoionization threshold. The energy density of the pho-

toionization laser described in Sec. 2.3 can be approximated as ǫ = E/πr2, which is

valid for a uniform pulse of light with total energy E and radius r. For typical pulse

energies of 10mJ, beam radius of 6mm, and assuming an average power loss of 10%

per pass through the chamber, the cumulative energy density would be 0.5 J/mm2.

From the measurements in [36], which found σi = 16.3 ± 2.6Mb, this would suggest

an ionization fraction of ≈ 65%, which is well into the saturation regime. The diffrac-

tion effects can be further be reduced through alignment of mirrors M4 and M5 in

Fig. 2.3.2. By aligning the retro-reflected beams such that they do do not perfectly

overlap with the original pass through the chamber, constructive interference of the

diffraction pattern can largely be avoided.

Due to limited optical access to the vacuum chamber, the only viewports available

for this configuration were the two pairs of mini (1.33 in.) ConFlat (CF) viewports

shown in Fig. 2.7. At the time of implementation, the windows on these viewports

did not possess anti-reflective (AR) coating and the recycling of the laser power would

have been significantly limited by power loss through each pass. To prevent this, we

constructed custom viewports that are AR-coated for the ionization wavelength of

322 nm. The construction of homemade viewports, as opposed to purchasing those

that are commercially available, was motivated by several factors. Commercial view-

ports are often very expensive, but more importantly they tend to have limited optical

quality near the edges. It is common, for example, for the edges of the substrate to

not be optically flat and the coatings are often not effective near the edges due to

a shadowing effect introduced during the coating process. This reduction of usable
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window area would limit the spatial size of UCNPs that could be created in the future.

Fig. 2.8 shows a schematic of our custom viewports, including a top-down view

(left) and two section views labeled ’A’ (middle) and ’B’ (right). This design is based

on the double-flange, solder-seal design from [72], which results in bakeable viewports

that are robust under reattachment. A key aspect of this design was the decoupling

of the substrate-flange seal from the high-stress sealing of the copper gasket. Each

section view shows a (1) custom 1.33 in. CF flange, (2) indium o-rings, (3) AR-coated

substrate, and (4) clamping flange, with the only difference being that section A shows

the bolt holes for sealing the CF flange to the chamber and section B shows those

for the substrate seal. Central holes were machined into the CF flange and clamping

flange with diameter equal to the vacuum chamber’s 16.5-mm aperture diameter.

Top View Section A Section B

1

2

3

2

4

5

Figure 2.8 : Custom AR-coated viewports

Smooth edges (5) were machined into each flange to facilitate the substrate-flange

seal with an indium o-ring on either side of the substrate. Indium was chosen as the

o-ring material because it is relatively soft and serves to isolate the substrate from

the sealing of the copper gasket while also being capable of providing a UVH seal.

The o-rings are made of 99.99% pure indium solder wire with .03 in. diameter from

Indium Corporation. Each o-ring was formed by cutting the solder wire to the length,



41

wrapping it around an appropriately sized cylindrical piece of aluminum, and then

joining the two ends by firmly pressing down on them.

Prior to assembly, all the components except for the indium solder were sonicated

in successive baths of trichloroethylene, acetone, and methanol - each being rinsed

off with the next chemical in the cycle prior to sonication - in order to prevent

contaminants from entering the vacuum chamber. Ideally, the indium solder would

have been sonicated as well, but unfortunately the sonication process made the indium

brittle and formation of the o-ring was nearly impossible without it breaking into

small pieces. To ensure cleanliness of the wire without degradation of the structural

integrity, the wire was soaked for 24 hours in successive baths of acetone and methanol.

Four viewports were constructed according to Fig. 2.8 and leak-tested using a cali-

brated helium leak detector prior to attachment to the experimental vacuum chamber.

The leak detector was important for determining how much pressure to apply to the

substrate-flange seal. Too much pressure resulted in the indium being squished to the

point that it leaked out into the visible portion of the glass, but too little pressure

would result in an indium seal that was not robust under reattachment. The indium

seal was made in three stages with the aid of the leak detector. The first seal was

made prior to sealing of the copper gasket, with just enough pressure applied such

that the indium o-rings could not move. Then, after the flange was sealed to the test

setup using a copper gasket, the indium was tightened just enough for the roughing

and mechanical turbo pump to establish a vacuum. Finally, the leak detector facil-

itated further tightening of the indium o-ring and each viewport was determined to

be leak-free within the 4×10−10 atm cm3/s noise floor of the detector. Each viewport

was removed and reattached to the setup several times to ensure robustness of the

substrate-flange seal prior to attachment to the vacuum chamber.
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2.3.3 Frequency Calibration Using Iodine Absorption Spectroscopy

Precise control of the ionization laser’s wavelength is important because essentially all

of the excess photoionization energy above threshold is converted to electron thermal

energy, effectively setting the initial electron temperature in the plasma. The energy

required to ionize 3P2
88Sr atoms can be determined from measurements of the atom

energy levels, which are reviewed in [73]. The absolute energy of the 5s2 1S0 ground

state is 45925.6 cm−1 and the energy of of the 5s5p 3P2 state relative to the ground

state is 14898.545 cm−1, so the ionization threshold corresponds to a wavelength of

λi = 322.2308 nm. The electron temperature resulting from an ionizing photon with

wavelength λp is given by

Te =
2hc

3kB

(

1

λp
− 1

λi

)

, (2.10)

where h is Planck’s constant and c is the speed of light.

The wavelength of the ionization laser is controlled using a computer program

that tilts the grating within the Moya oscillator. The wavelength displayed within

the control program λ̃N , which is denoted with a tilde to distinguish the 644-nm

photons from those doubled to 322 nm, is derived from an internal calibration that

relies on linearity between the laser wavelength and the mechanism that tilts the

grating relative to a precisely known reference point at λ̃N = 384.3295 nm. This

calibration is used to to characterize the wavelength across several 100s of nm, so

slight non-linearity between the tilt and the wavelength is expected to introduce

errors, especially at wavelengths far from the reference point.

To estimate the validity of the internal calibration, an external frequency calibra-

tion was conducted using iodine absorption spectroscopy. Spectroscopy on the B−X

iodine transition has historically provided a useful means for calibrating lasers in the
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visible and near-infrared due to extensive measurements of the absorption spectrum

using Fourier transform (FT) interferometers. The iodine calibration described here

compares experimental measurements of the absorption spectrum to those recorded

from 14250− 20100 cm−1 using a Doppler-limited FT interferometer with an instru-

ment linewidth of .02 cm−1 [74].

Fig. 2.5 shows a schematic for iodine absorption spectroscopy using the ND6000.

The absorption spectrum is measured by recording the transmission of the 644-nm dye

laser beam through a Thorlabs GC19100-I quartz iodine reference cell that is heated to

∼ 85◦C (similar to the temperature used in [74]) on a Thorlabs DET36A2 photodiode

(PD1). To account for power fluctuations in the beam, a second photodiode (PD2) is

used to record the power of a reference beam that does not pass through the iodine

cell. The ratio of the integrated signals from PD1 and PD2 is proportional to the

absorption spectrum. Prior to measurement, care was taken to ensure that the dye

laser power was sufficiently small so as to not saturate the photodiodes. The power

reduction involved operating the dye laser without pumping the amplifier cells and

using a series of beam splitters and neutral density filters in the optical path.

To obtain a meaningful comparison of these measurements with the tabulated

transmission results in [74], it was important to account for differences in spectral

broadening introduced by the differing instrument linewidths. The spectra were both

recorded with similar temperatures, but the lower bound on the linewidth of the

ND6000 (.08 cm−1) is larger than the FT interferometer (.02 cm−1) from [74], so

the tabulated results are convolved with a Lorentzian characterized by a FWHM

of .06 cm−1. It is also important to note that the procedure described above only

provides a measurement that is proportional to absorption spectrum, not equal to it.

At the time of recording, the signal on PD1 was not recorded at room temperature, so
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a conversion to an absolute measurement of the transmission is not possible. Thus,

the spectra are only compared in arbitrary units where the vertical scales of each

spectrum are adjusted to facilitate comparison.

Fig. 2.9 compares the experimental measurements with the tabulated data from

[74] for two separate scans across the iodine cell, one from λ̃N = 643.8 − 644.45 nm

(top) and another from λ̃N = 640.8 − 641.5 nm (bottom). In order to obtain good

agreement with the reference measurements, a wavelength correction factor (∆λ̃) was

applied to the experimental data, as indicated in the legend. A single value of ∆λ̃ was

not sufficient for the measurements to match the reference across the entire scan range,

suggesting that the dye laser wavelength deviates from the linear approximation in

the internal calibration. To estimate how much the correction factor changes with

λ̃N , each scan was broken up into two segments and a separate shift was applied to

each - one to make the measurements match at low wavelength (blue) and the other

at higher wavelength (purple).

Successive scans over the same wavelength ranges in Fig. 2.9 yield the same sys-

tematic behavior. In practice, the systematic errors are sufficiently small that the

real dye laser wavelength (λ̃R) can be determined using a wavelength-independent

correction factor λ̃R = λ̃N + ∆λ̃, where ∆λ̃ = 0.3 nm is chosen to ensure agreement

at wavelengths corresponding to Te ≈ 10K. The electron temperature can be de-

termined from Eq. 2.10 using λp = λ̃R/2. At shorter wavelengths (higher Te), the

electron temperature will systematically be underestimated, but not by a significant

amount. For example, at λ̃ = 640.8 nm (Te ≈ 150K), the temperatures corresponding

to ∆λ̃ = 0.3 nm and ∆λ̃ = 0.328 nm differ by less than 1%.
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Figure 2.9 : Calibration of the dye laser wavelength with two separate scans of the
iodine cell; one near the ionization threshold (top) and another near wavelengths
corresponding to Te ≈ 100K. Each scan is broken up into two segments, one with
a wavelength correction chosen for agreement at the low (blue) and high (purple)
ends of the wavelength range. Following the application of the correction factor,
good qualitative agreement is found between experimental data and the reference
measurements from [74].

2.4 Creation of a UCNP from Spin-Polarized Atoms

Following photoionization with the pulsed dye laser system that was introduced in

Sec. 2.3.1, a single valence electron is liberated from a large fraction of the mag-

netically trapped 3P2 atoms. The laser intensity is approximately uniform over the

spatial extent of the precursor atom cloud and the liberated electron carries away the

excess energy and angular momentum of the ionizing photon, so the photoionization

process results in the ions inheriting the density, velocity, and internal-state distribu-

tions of the precursor atoms. UCNPs can be created within the biconic cusp field by
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leaving the fields on throughout ionization or the fields can be extinguished before-

hand for studies without external magnetic fields. In either case, immediately after

photoionization, the ion density distribution is given by the exponentially decaying

distribution in Eq. 2.8 and the velocity distribution is close to that of the Ta ≈ 3mK

atoms.

When the fields are left on throughout ionization, the ions also inherit the electron-

spin polarization of the atoms. The 3P2 precursor atoms predominantly occupy the

mj = +2 magnetic sublevel because this state is the most efficiently trapped. In this

state, both of the electrons are field aligned and the ions created this way are expected

to be highly spin polarized because the remaining valence electron is unperturbed

during photoionization. However, there are limits to the purity of the polarization

when photoionizing magnetically trapped atoms because not all of the atoms in the

trap occupy the polarized mj = +2 state. For example, despite being less efficiently

trapped, there will be a small population of atoms in the mj = +1 state, in which

only one of the electrons is field-aligned. Photoionization of these atoms will yield

an imperfect ion polarization. A quantitative measurement of the relative population

between the mj = +2 and mj = +1 states has not been done. Another source of

impurity arises at the trap center where the atom spin states can change due to

non-adiabatic motion through the field null. Atoms that flip into the anti-trapped

mj = −1,−2 states are not expected to remain in the in the trap for long periods

of time, but it is possible for a significant number of unpolarized mj = 0 atoms to

accumulate, reducing the electron-spin polarization of the ions created near the field

null.

The formation of polarized ions via photoionization is common for studies of var-

ious spin-dependent collision dynamics [75] and can be used for the characterization
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of magnetic and semiconductor materials [76]. This has been reported previously, for

example, using laser-excited 3P1 Sr atoms [76, 75]. Spin-polarized ions should also

prove to be useful in the field of UCNPs because, as discussed in the next chapter,

it is possible to directly measure the local ion polarization using laser-induced fluo-

rescence. The global ion polarization is expected to be conserved because the ions

are sufficiently cold and dilute that state-changing collisions are negligible and the

plasma expansion occurs faster than spin-flips due to non-adiabatic motion through

the field null. Thus, measurement of the electron-spin polarization in UCNPs should

open up new avenues to study plasma flow and diffusion.
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Chapter 3

LIF Imaging of a UCNP in a Magnetic Field

Application of LIF is widespread in many types of plasmas because of its power to

resolve measurements of the density, velocity, and internal-state distributions of ionic

and neutral species and measurement of electric and magnetic fields without perturb-

ing the plasma. For example, LIF can be used to diagnose plasma processing sources

[77], high-temperature plasmas such as in fusion research [78, 79, 80], and a large

assortment of basic plasma configurations such as helicon plasmas [81], magnetron

plasmas [82], magnetically confined pure ion plasmas [83], dusty plasmas [84, 85],

and UCNPs [25, 33]. Compared to other applications, LIF in UCNPs is relatively

straightforward because there is typically only one ion species, which occupies the

ground electronic state in the absence of driving laser fields, and collision energies

and densities are low enough to neglect state-changing collisions. This simplicity

facilitates detailed, quantitative interpretation of experimental data.

Most experiments to date have been conducted in the absence of external fields,

for which LIF in UCNPs is well characterized [33]. For Sr+ ions imaged on the prin-

ciple transition at 422 nm with linear laser polarization, the LIF spectrum consists of

a single spectral feature that can be characterized as a Voigt profile, formed by con-

volving a power-broadened Lorentzian lineshape with the local velocity distribution.

However, in the presence of external magnetic fields, this simplicity is lost due to

Zeeman shifts of the LIF transitions and the varying direction of the magnetic field.

This chapter introduces a model for LIF in a magnetized UCNP that uses velocity-
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resolved rate equations (REs) to describe the transfer of ion population due to laser

coupling and spontaneous emission. This description captures the optical pumping

of ions into states that are not driven by the imaging laser and is validated with ex-

perimental data. The relative intensities of the resolved Zeeman components provide

clear evidence that the ions are electron-spin polarized when created by photoioniz-

ing magnetically trapped 88Sr atoms. The extension of this probe to the magnetized

regime should open new avenues for studying thermal transport and the equilibration

of plasmas in overlapping regimes of strong coupling and magnetization.

3.1 Experimental Details

In our experiment, the plasma is probed at an adjustable time after photoionization

using LIF on the 5s 2S1/2 − 5p 2P1/2 transition of Sr+ at 422 nm. The LIF laser, with

detuning ∆ from unperturbed resonance, propagates along the symmetry axis of the

anti-Helmholtz coils to illuminate a w ≈ 1mm thick central slice of the plasma (z ≈ 0)

(Fig. 1a). A 1:1 optical relay is used to image scattered photons onto an intensified

CCD camera over an excitation period with duration τE, which is set by CCD and

LIF-laser gating, to obtain a spatially resolved LIF fluorescence spectrum, F (x, y,∆),

with 50µm.

The four magnetic sublevels that are coupled by the LIF laser are shown in

Fig. 3.1b. The unperturbed resonance of each level and Zeeman shifts for ions in-

teracting with the quadrupole magnetic field in Eq. 2.2 are indicated by the dashed

and solid lines, respectively (energies are not to scale). There are four possible tran-

sitions, with the photon polarization indicated in the figure. Each transition is as-

sociated with a unique line color, which will be used to refer to the transitions in

subsequent figures throughout this thesis.
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Figure 3.1 : (a) Experimental schematic for laser-induced-fluorescence (LIF) imaging
and application of quadrupole magnetic fields using anti-Helmholtz coils (inset depicts
field lines). The plasma is illuminated by a thin sheet of 422-nm light that propagates
along the x axis. For the data described here, LIF polarization is linearly polarized
along the y axis, left-hand circular, or right-hand circular. The ion fluorescence is
imaged onto an intensified CCD camera using a 1:1 optical relay along the z axis.
(b) Sr levels coupled by LIF laser with (dashed) and without (solid) Zeeman shifts,
with the quantization axis taken to be along the local magnetic field. Reused with
permission from [86]. Copyright 2022 by the American Physical Society.

The imaging transition at 422 nm is not closed, as ions can decay from the 2P1/2

excited state into the 2D3/2 state, which is dark to the imaging laser, with a rate of

γD = 9.5 × 106 s−1 [87]. The decay rate from the 2P1/2 excited state into the 2S1/2

ground state is γ = 1.26×108 s−1 [87], so ions decay into the dark state 7% of the time.

Decay into the dark state does not significantly impact most experiments because the

laser intensity and excitation duration are sufficiently small that only one photon is

scattered off of each ion, but the experiments described here use a relatively large

exposure period of τE = 2µs, for which this process cannot be neglected.
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3.1.1 Characterizing the LIF-Laser Intensity and Polarization

Precise knowledge of the LIF-laser intensity and polarization is important because

it determines the strength of coupling to each of the imaging transitions shown in

Fig. 3.1b. The imaging laser is a thin, collimated sheet of light that propagates along

the symmetry (x) axis of the anti-Helmholtz coils (Fig. 3.1), such that the wavevector

is given by ~k422 = kx̂, where k = 2π/λ422. The beam is formed by passing a relatively

symmetric Gaussian beam through a 12.5mm× 1mm rectangular slit. An electro-

optic gating system pulses the light on for imaging and supports pulses of duration

τE = 50 ns−2µs.

The intensity distribution of the imaging sheet in the y-z plane is measured using

an intensified CCD camera with a 6.6mm× 5.3mm active area consisting of 10.4µm

pixels. The imaging sheet is larger than the active area on the camera, so multiple

images were required in order to capture the full beam profile. To this end, the camera

was mounted on a translation stage and five different images were taken at different

positions along the y axis, as indicated in Fig. 3.2a. To a good approximation, the

intensity distribution is separable and can be expressed as

I(y, z) = I0Ĩy(y)Ĩz(z), (3.1)

where I0 is the peak laser intensity and Ĩy and Ĩz are the relative intensity distributions

along the respective axes, which are determined numerically by integrating over the

other spatial coordinate.

Along the y axis, the beam largely retains its Gaussian character within the hard

edges imposed by the slit (Fig. 3.1b). The data within the edges of the slit was fit to

a Gaussian of the form

f(y) = f0 exp

(

−2(y − y0)
2

σ2
y

)

, (3.2)
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Figure 3.2 : (a) Images of the 422-nm imaging laser taken with an intensified CCD
camera that is mounted to a translation stage. The y axis of each image has been
shifted by the micrometer position indicated above each figure. (b) and (c) show
the relative intensity distribution along the y and z axes, respectively. The 1/e2

radius along each axis is determined with a Gaussian (σy = 6.9mm) and exponential
(σz = 0.48mm) fit, respectively.

which yielded a 1/e2 radius of σy = 6.9mm. The profile along the z axis is limited

by diffraction from the slit (Fig. 3.2c) and is best characterized by an exponential of

the form

f(z) = f0 exp

(

−|z − z0|
σz

)

, (3.3)

which yields a 1/e2 radius of σz = 0.48mm.

An absolute calibration of the peak laser intensity (I0) is obtained through an

independent measurement of the pulse power (P ). Due to the pulsed nature of the

imaging beam, P is most accurately measured with a fast photodiode, rather than
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using a standard continuous-wave (CW) power meter to infer the laser power through

a duty cycle measurement. A Thorlabs DET36A2 photodiode, which has a rise time

that is smaller than the duration of the pulse, was used to measure the pulse height in

voltage. Operating in the linear response regime of the photodiode, the photodiode

was then calibrated to return power at 422 nm by measuring the voltage of a CW

422-nm beam of known power. The pulse power can be related to the peak intensity

through the integration of Eq. 3.1:

P = I0

∫

dyĨy(y)

∫

dzĨz(z). (3.4)

In practice, I0 is determined through numerical integration of the measured beam

profile, and the typical peak laser intensity used in this thesis is within the range

I0 = 150− 200W/m2.

The imaging laser’s electric field, ~E(~r, t), can be described as a monochromatic

plane wave that propagates along the x axis and is polarized in the yz-plane:

~E(~r, t) =
E0(y, z)

2

[

ǫ̂(η, φ) ei(kx−νt) + c.c.
]

, (3.5)

where c.c. indicates the complex conjugate of the first term, the field amplitude is

E0(y, z), and the laser polarization,

ǫ̂(η, ξ) = ηŷ + eiξ
√

1− η2ẑ, (3.6)

is parameterized by η ∈ [0, 1] and a phase shift ξ. Parameterized in this way, η and ξ

can be chosen to represent any polarization in the y-z plane. For the measurements

presented in this thesis, the LIF-laser is linearly polarized along the y axis (η = 1)

or left or right-handed circular polarization (LC/RC: η = 1/
√
2, ξ = ±π/2). The

amplitude of the electric field is related to the laser intensity distribution as I(y, z) =

1
2
cǫ0 |E0(y, z)

2|.
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3.2 Modeling the Capture of Laser-Induced Fluorescence

Laser-induced-fluorescence imaging works by relaying spontaneously emitted photons

from a particle onto a camera. The rate of fluorescence emanating from any point

in space after an excitation of duration τ is proportional to the local ion density n,

the ensemble-averaged fraction of those ions p̄e(τ) that occupy an excited state |e〉 ,

and the rate γeg with which the ions decay back into ground state |g〉. A main focus

of this chapter is the calculation of p̄e(τ), which contains the physics of the ion’s

interaction with the optical and magnetic fields and plasma characteristics such as

the local density, velocity, and internal-state distributions prior to excitation.

The level of sophistication required to model p̄e depends on the excitation con-

ditions at hand, and this topic is discussed in detail in Sec. 3.4. However, for the

present discussion, lets assume that we know p̄e for all τ and position relative to the

plasma center, ~r = (x, y, z). The LIF signal collected by the camera from an area

A = δxδy centered at position (x, y) arises from a volume element V = Aw centered

at z = 0. Assuming negligible variation of plasma properties over this volume, the

signal during an excitation period of duration τE with detuning ∆ is given by

F (x, y,∆) = V Cp→s

∫ τE

0

dτ
∑

e,g

np̄eγegξeg, (3.7)

where Cp→s is a photon-to-signal conversion factor, which is determined by an inde-

pendent density calibration that relies on the density dependence of DIH [41]. The

sum runs over the magnetic sublevels of the excited (|e〉 = |3〉, |4〉) states and the

ground (|g〉 = |1〉, |2〉) states in Fig. 3.1b, where |1〉 and |3〉 correspond tomj = −1/2.

ξeg is the fraction of emitted photons that are relayed onto the camera due to decay

from excited state |e〉 to ground state |g〉 and accounts for the dipole radiation pat-

tern and collection solid angle of the optical relay. The decay rates between states
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coupled by the LIF laser are γ41 = γ32 = 2γ/3 and γ31 = γ42 = γ/3 (see Sec. 3.2.1).

Equation 3.7 makes the simplifying approximation of evaluating all quantities at

the center of the volume V , which greatly reduces computational overhead compared

to integrating and accounting for the variation of ~B and I across the local volume

element. δx and δy are chosen to be sufficiently small such that the spatial variation

of all quantities in the x-y plane can be neglected. However, significant variation of I

over the camera line of sight along the z axis cannot be avoided. The most important

impact of this variation is on the amount of optical pumping of ions into off resonant

states. Computationally expensive calculations of spectra were performed, explicitly

integrating over the z axis. It was found that the simple calculation (Eq. 3.7) with

an effective laser intensity Ī = 0.45I0 accurately matched the results of the more

expensive calculation over a wide range of conditions (Sec. 3.7). This effective value

and Eq. 3.7 were used for all results presented in this thesis.

3.2.1 Spontaneous Emission

Spontaneous emission occurs due to coupling of a particle’s internal states with fluc-

tuations in the vacuum field. This phenomenon is inherently quantum mechanical,

and was first described by Dirac’s quantum theory of radiation [88] and later by

Weisskopf and Wigner within the framework of quantum electrodynamics [89]. These

models captured the physics associated with spontaneous emission for the first time,

and proved that Einstein’s intuitively based semi-classical treatment from years prior

also provides an accurate emission rate in the electric dipole approximation, where

the wavelength of light is significantly larger than the size of the particle. The spon-

taneous emission rate from excited state |e〉 to ground state |g〉 in the electric dipole
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approximation is given by

γeg =
4

3

αω3

c2
|r̂g←e|2, (3.8)

where α is the fine-structure constant, ~ω is the energy of the emitted radiation, and

r̂g←e = 〈g|r̂|e〉 is the expectation of the position operator r̂ [90].

The total decay rate, γ, from one manifold to another can be obtained by averaging

over the possible initial (excited) states and summing over the possible final (ground)

states and is given by

γ =
1

2je + 1

∑

e,g

γeg, (3.9)

where je is the total angular momentum of the excited state. It is often useful to invert

this relation because γ is typically quoted in the literature. The Wigner-Eckart (WE)

theorem facilitates this inversion and describes the decomposition of a matrix element

for a spherical tensor T k
q with respect to an upper state |u〉 = |n′j′m′〉 and a lower

state |l〉 = |njm〉 in terms of the double-bar (reduced) matrix element and either the

Clebsch-Gordan coefficient (first line) or the 3-j symbol (second line):

〈n′j′m′|T k
q |njm〉 = (−1)2k

〈jmkq|j′m′〉√
2j′ + 1

〈n′j′||T k||nj〉

= (−1)j
′−m′







j′ k j

−m′ q m






〈n′j′||T k||nj〉,

(3.10)

where the Racah and Wigner normalization convention has been used for the reduced

matrix element [91, 92]. The 3-j symbol, now being abbreviated as Jul, satisfies the

relation
∑

u,l

J2
ul = 1, (3.11)

where u and l index the upper and lower states, respectively.

The position operator is a rank 1 spherical tensor and its components are given by

rq = rC1
q , where q = 0,±1 and C l

m =
√

4π
2l+1

rY l
m is the normalized spherical harmonic
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function. Eqs. 3.8−3.11 form a closed set of equations that can be used to express

the reduced matrix element for r̂ in terms of the total decay rate as

〈n′j′||rC1||nj〉 = (−1)j+j>
√

2j′ + 1

√

3πc3ǫ0~γ

ω3e2
, (3.12)

where j> is the greater of j and j′. Finally, γeg can be related to γ by inserting

Eqs. 3.10−3.12 into Eq. 3.8 to obtain

γeg =
√

2je + 1J2
egγ. (3.13)

For the transitions in Fig. 3.1b, the 3-j symbols are J41 = J32 = −1/
√
3 and J31 =

J42 = 1/
√
6 and je = 1/2, so γ41 = γ32 = γ/3 and γ42 = γ31 = 2γ/3.

The angular distribution of spontaneously emitted photons follows that of an

electric dipole relative to the quantization axis and depends on the angular momentum

of the emitted photon (i.e., polarization of the decay channel). The LIF process

described here involves the capture of both π- and σ-polarized radiation. The mean

power radiated per unit solid angle dΩ = sin(α)dαdθ is

dPπ

dΩ
=

3P0

8π
sin2(α)

dPσ

dΩ
=

3P0

8π

[

1− 1

2
sin2(α)

]

,
(3.14)

where P0 = ck4d2/12πǫ0 is the the total power radiated for a linear dipole moment d,

k = ω/c, and α is the polar angle of a spherical coordinate system [93]. In the next

section, these distributions are used to determine the fraction of photons captured by

the optical relay for each photon polarization.

3.2.2 Photon Capture using an Optical Relay

The optical relay in Fig. 3.1a consists of a single spherical lens with diameter d =

50.8mm that is located a distance L = 175mm from the imaging plane (i.e., the
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midway point between the imaging plane and the camera). The lens diameter is

sufficiently large compared to the FOV of the camera (≈ 5mm from the field null)

that the ions can be treated as a point source. In this case, the relay will capture

emitted photons for polar angles within δα = ± tan−1(d/2L) ≈ 8◦ of the z axis in the

lab coordinate system.

The fraction of captured photons for photon polarization q = π, σ is computed by

integrating the angular distribution over the captured solid angle and dividing it by

the total number of radiated photons

ξq =
1

P0

∫ α+δα

α−δα

∫ 2π

0

dαdθ sin(α)fq(α− φ), (3.15)

where φ is the angle that the ion quantization axis subtends from the x-y plane and

θ is the azimuth angle.

The captured fraction generally depends on the angle φ, but this dependence does

not translate to the photon capture rate due to decay from each excited state. This

can be seen through rearrangement of variables within the summation in Eq. 3.7,

which can alternatively be expressed as

F (x, y,∆) = V Cp→s

∫ τE

0

dτ
∑

e

np̄ere. (3.16)

where re =
∑

g γegξeg is proportional to the rate of photon capture due to decay from

excited state |e〉. Due to the symmetry of the LIF level structure (Fig. 3.1), r3 = r4.

Fig. 3.3 plots Eq. 3.15 and re/γ as a function of φ. re does not depend on φ because

the two decay channels for each excited state - one with linear polarization with a

rate γ/3 and another with circular polarization with a rate 2γ/3 - are weighted such

that the dependence cancels out. This validates the evaluation of ξeg in Eq. 3.7 at

φ = 0, for which the the captured fraction is 0.2067 (π) and 0.1047 (σ).
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Figure 3.3 : Fraction of spontaneously emitted photons that are captured using the
optical relay in Fig. 3.1a for spontaneous emission of π- and σ-polarized light as a
function of the angle (φ) that the ion quantization axis subtends from the x-y plane.
re =

∑

g γegξeg is proportional to the total photon capture rate due to decay from
excited state |e〉 to each LIF ground state |g〉. This quantity sums the contributions
from the σ- and π- polarized decay paths and is found to be invariant with φ.

3.3 Electric Dipole Interaction for a Two-Level Ion in a Mag-

netic Field

Before introducing the model for the magnetized plasma in its full complexity, we will

first consider the influence of the electric and magnetic fields during LIF on a single

two-level ion with velocity ~v. The direction of the external quadrupole magnetic field

in Eq. 2.2 is chosen as the quantization axis for the ion’s internal states, which consist

of an excited state |e〉 that spontaneously decays to ground state |g〉 with rate γ. The

excited state energy relative to the ground state is ~ω0 in the absence of a magnetic

field.
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3.3.1 Electric Dipole Interaction

The interaction between the ion and the light field in the electric dipole approximation

is given by

Ĥd = −d̂ · ~E, (3.17)

where d̂ = er̂ is the dipole moment operator. The frequency of the LIF laser (ν) is

Doppler-shifted in the ion’s frame of reference and, to first order, the shifted frequency

is ν ′ = ν − kvx. By inserting the expression for the LIF-laser’s electric field from

Eq. 3.5, the dipole Hamiltonian in Eq. 3.17 can be rewritten as

Ĥd = −~

2

[

Ω̂ei(kx−ν
′t) + Ω̂⋆e−i(kx−ν

′t)
]

, (3.18)

where Ω̂ = eE0

~
r̂ · ǫ̂ is the Rabi coupling operator. The matrix elements of Ω̂ quantify

the laser-induced coupling between the internal states and are given by

〈e|Ω̂|g〉 ≡ Ωe←g =
eE0

~
〈e|r̂ · ǫ̂|g〉. (3.19)

A more meaningful expression for Ωe←g can be obtained by expanding the inner

product in the spherical basis as r̂ · ǫ̂ =
∑

q(−1)qrqǫ−q =
∑

q rqǫ
⋆
q. Using the WE

theorem (Eq. 3.10) and the expression for the reduced matrix element for the position

operator (Eq. 3.12), we find

Ωe←g = Ω0ǫ
⋆
q(−1)j+j′+j>−m′

√

2j′ + 1Jeg, (3.20)

where Ω0 =
√

6πγc2I/~ω3 and q = me
j − mg

j [91]. Here, I have used the fact that

I(y, z) = 1
2
cǫ0 |E0(y, z)

2|.

The components of ǫq depend on the direction of the ion quantization axis, which is

set by the local quadrupole magnetic field. The local field coordinate system, denoted

by primes, is defined such that ŷ′ lies in the x-y plane and ẑ′ = B̂. The direction
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of the local field can be characterized by φ = sin−1(z/
√

4x2 + y2), the angle that B̂

subtends from the x-y plane of the lab coordinate system, and θ = tan−1(2x/y), the

angle that the projection of B̂ in the x-y plane subtends from the y axis.

The LIF-laser’s polarization vector in Eq. 3.6 is expressed in the basis of the lab

coordinate system, but must be expressed in terms of the local field basis prior to

determining the spherical tensor components. A change of basis from a vector using

the lab coordinates (~v) to one using those of the local field (~v ′) can be obtained

through the transformation

~v ′ = Ry′(π/2− φ)Rz(π/2− θ)~v, (3.21)

where Ra is a standard rotation matrix about the indicated axis a. The first rotation

is about the z axis and the second is about the intermediate y′ axis. Applying this

transformation to the LIF-laser polarization yields

ǫ̂ =+ x̂′
[

eiξ
√

1− η2 cos(φ)− η cos(θ) sin(θ)
]

+ ŷ′ [η sin(θ)]

+ ẑ′
[

eiξ
√

1− η2 cos(φ) + η cos(θ) sin(θ)
]

.

(3.22)

The spherical tensor components of ǫ̂ are obtained by projection onto the spherical

basis [ê0 = ẑ′ and ê±1 = ∓(x̂′ ± iŷ′)/
√
2]:

ǫ0 = η cos(θ) cos(φ) + eiξ
√

1− η2 sin(φ)

ǫ±1 = − 1√
2

[

iη sin(θ)± eiξ
√

1− η2 cos(φ)∓ η cos(θ) sin(φ)
]

.
(3.23)

The fluorescence model in Eq. 3.7 evaluates all quantities in the x-y plane. In this

simplifying case, the spherical tensor components reduce to

ǫ0 = η cos(θ)

ǫ±1 = − 1√
2

[

iη sin(θ)± eiξ
√

1− η2
]

.
(3.24)
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3.3.2 Hamiltonian for LIF in the Rotating Wave Approximation

The magnetic fields considered here (| ~B| . 100G) are sufficiently weak that the

Zeeman shifts are small compared to the fine-structure splittings. In this weak-

field limit, degenerate perturbation theory can be used to show that the Zeeman

Hamiltonian is diagonal with elements indicating the first-order Zeeman shift:

~δα = gαLm
α
j µB| ~B|, (3.25)

where gαL and mα
j are the Lande g-factor and magnetic quantum number for state |α〉,

respectively. The closed system Hamiltonian for LIF, including the interactions with

the electric and magnetic field, but ignoring spontaneous emission, can be expanded

in terms of the basis states as

ĤLIF = ~δg|g〉〈g|+ ~(ω0 + δe)|e〉〈e|

− ~

2

[

Ωe←g|e〉〈g|ei(kx−ν
′t) + Ω⋆

e←g|g〉〈e|ei(kx−ν
′t)
]

− ~

2

[

Ωe←g|e〉〈g|e−i(kx−ν
′t) + Ω⋆

e←g|g〉〈e|e−i(kx−ν
′t)
]

.

(3.26)

The dynamics of the ion wave function are typically studied in the interaction pic-

ture, where a unitary transformation is made to a basis set where the wave functions

are rotating with the light field. A unitary transformation in quantum mechanics is

made by using a unitary operator (Û) to change the current basis set (|ψ〉) to a new

set given by |ψ̃〉 = Û |ψ〉. The Hamiltonian under the new basis is

H̃ = UHU † + i~
∂U

∂t
U †, (3.27)

where here, and going forward, the hat notation for quantum mechanical operators

will be suppressed for clarity. The Hamiltonian can be transformed to the interaction

picture using a unitary operator of the form U = exp(
∑

k ifk(t)|k〉〈k|), such that the



63

Hamiltonian transforms as

H̃ = UHU † −
∑

k

~
∂fk
∂t

|k〉〈k|. (3.28)

In this form, it becomes apparent that the first term on the right-hand side transforms

the off-diagonal elements of H and the second term shifts the diagonal elements.

Eq. 3.26 can be transformed with a unitary operator defined by fg = 1 and fe =

ν ′t and, after ignoring any remaining terms that oscillate as ∼ exp(2iν ′t) (i.e., the

rotating wave approximation), we find

H̃LIF = ~δg|g〉〈g|+ ~(δe −∆′)|e〉〈e|

− ~

2

[

Ωe←g|e〉〈g|eikx + Ω⋆
e←g|g〉〈e|e−ikx

]

,

(3.29)

where ∆′ = ∆− kvx is the Doppler-shifted detuning of the LIF-laser.

3.3.3 The Master Equation

The time evolution of a single-particle, pure-state density matrix ρ = |ψ〉〈ψ| in an

open quantum system is governed by the master equation, which can be written in

its most general form as

∂ρ

∂t
=

1

i~
[H, ρ]−

∑

k

γk
2

(

c†kckρ+ ρc†kck − 2ckρc
†
k

)

, (3.30)

where ck are quantum jump operators with associated decay rates γk (i.e., k indexes

each possible decay path, so ck = |u〉〈l| where the upper and lower states for the de-

cay path are |u〉 and |l〉, respectively), and H is the closed system Hamiltonian. The

diagonal elements of the density matrix (i.e., the populations pα ≡ ραα = 〈α|ψ〉〈ψ|α〉)

quantify the probability that the ion occupies state |α〉 and the off-diagonal elements

(i.e., the coherences ραβ = 〈α|ψ〉〈ψ|β〉) quantify the phase difference between projec-

tions onto the two states.
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In the simple case of a two-level ion, the time evolution of the density matrix for

H̃LIF in Eq. 3.29 is given by the following set of differential equations

ρ̇ee = − i

2
(Ω⋆

e←gρeg − Ωe←gρge)− γρee (3.31)

ρ̇gg = +
i

2
(Ω⋆

e←gρeg − Ωe←gρge) + γρee (3.32)

ρ̇eg =(i∆eg − γ/2)ρeg +
iΩeg

2
(ρgg − ρee). (3.33)

where ∆eg = ∆′ − (δe − δg) is the Doppler- and Zeeman-shifted resonance condition

for the transition.

Analytic solutions to Eqs. 3.31−3.33, which describe damped Rabi oscillations

for a two-level ion, can be found in textbooks [94], but they often do not exist for

systems with more complicated level structures, as is the case for LIF of Sr+ ions. In

the absence of analytic solutions, Eqs. 3.31-3.33 can be numerically integrated with

Runge-Kutta methods, however, numerical solutions to the exact equations become

impractical when implemented in a fit routine because the number of equations that

must be solved scales with the square of the basis size.

Fortunately, the early-time dynamics of the coherences, which damp on timescales

of γ−1, do not play a significant role in LIF when the excitation duration vastly exceeds

the damping time (τ ≫ γ−1), and we can seek solutions in the limit t ≫ γ−1, for

which the coherences are in equilibrium (i.e., ρ̇αβ = 0). In this case, Eq. 3.33 can be

used to demonstrate that the population transfer rate between states coupled by the

laser is proportional to

Ω⋆
e←gρeg − Ωe←gρge =

2i|Ωe←g|2γ
∆2

eg + γ2/4
(ρgg − ρee). (3.34)

Inserting Eq. 3.34 into Eqs. 3.31 and 3.32, we obtain the following set of rate equations
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(REs) that describe the transfer of population between the two states

ṗe = +Reg(pg − pe)− γpe

ṗg = −Reg(pg − pe) + γpe,

(3.35)

where the scattering rate from state |g〉 to |e〉 is defined as

Reg =
|Ωe←g|2γ

∆2
eg + γ2/4

. (3.36)

The solutions to Eqs. 3.35 will eventually reach the steady state where ṗe = ṗg = 0,

such that the excited state population in equilibrium is

pe =
Reg

γ + 2Reg

=
seg/2

1 + seg + 4∆2
eg/γ

2
, (3.37)

where seg = 2|Ωe←g|2/γ2 is the saturation parameter for the transition.

The steady state solution in Eq. 3.37 saturates at a maximum value of pe = 1/2

for seg ≫ γ, leading to power-broadening of the transition, and can also be arrived at

using Fermi’s golden rule (FGR), which is valid for the two-level case when τ ≫ γ−1.

In the event that the transition is not closed and the excited state can decay to a

state that is dark to the imaging laser, the steady-state solution can still be valid

when less than one photon is scattered during excitation (i.e., Regτ ≪ 1).

3.4 Rate Equation Model for LIF Imaging in a Magnetic

Field

In this section, we introduce a set of incoherent, collisionless rate equations (REs) to

calculate p̄e(τ,∆, n, vx,hyd, Ti, P ), the ensemble-averaged fraction of ions that occupy

excited state |e〉 after an excitation of duration τ that is characterized by Eq. 3.43

and includes spontaneous emission from the 2P1/2 excited state to the 2S1/2 electronic
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ground state and the 2D3/2 dark state. The calculations of p̄e are then input to

the fluorescence model in Eq. 3.7, which is used to fit local LIF spectra and extract

measurements of plasma density (n), hydrodynamic fluid velocity along the LIF-laser

propagation direction (vx,hyd), ion temperature (Ti), and electron-spin polarization

(P ) inside volume V at position x, y, z = 0. These quantities vary with position

and plasma evolution time t, but for brevity these dependencies are not explicitly

indicated. The plasma density, hydrodynamic fluid velocity, and ion temperature

are also assumed to be stationary in time during excitation, which is valid because

τE ≪ τexp.

At the beginning of the excitation period (τ = 0), the ions occupy the 2S1/2 ground

manifold (p̄1 + p̄2 = 1, p̄3 = p̄4 = 0 ) with electron-spin polarization P = p̄2 − p̄1.

The ions are assumed to be in local thermal equilibrium with Maxwell-Boltzmann

velocity distribution centered around vx,hyd, G(vx, vx,hyd, Ti), therefore the probability

that an ion with velocity vx occupies state |k〉 at τ = 0 is given by pk(vx, τ =

0, n, vx,hyd, Ti, P ) = p̄k(τ = 0)G(vx). (Here, and going forward, we suppress arguments

of functions for clarity.) This formalism only tracks the velocity along the x axis

because the Doppler shift of the LIF excitation is only sensitive to this component.

For τ > 0, the velocity dependence of pk(vx, τ) is not necessarily Gaussian and the

ensemble average can be computed as

p̄k(τ) =

∫ ∞

−∞

dvxpk(vx, τ). (3.38)

In the absence of magnetic fields, F (x, y,∆) takes on a simple form when imaging

a UCNP with linear polarization [33]. In this case, the ion quantization axis is set by

the LIF-laser polarization direction, so the degenerate π transitions are driven equally

and pe quickly stabilizes after a few times the excited state lifetime (γ−1 ≈ 8 ns). The

resulting spectrum, typically recorded after an excitation period of a few 100 ns, can
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be described as a single Voigt profile, formed by convolving the single-particle, power-

broadened Lorentzian lineshape with the local velocity distribution [33].

In the presence of quadrupole magnetic fields, this simplicity is lost due to Zeeman

shifts of the LIF transitions and the varying direction of the magnetic field, which

is chosen as the quantization axis (Fig. 3.1b). The laser excitation rate from ground

state |g〉 to excited state |e〉 is given by

Reg =
Ω2

e←gγtot

γ2tot + 4∆2
eg

, (3.39)

where Ωe←g is the Rabi coupling between the respective states, ∆eg is the Doppler- and

Zeeman-shifted resonance condition, and γtot = γ + γD + γL is the effective linewidth

including the laser linewidth γL/2π = 5MHz. The resonance condition and Rabi

couplings that determine the laser excitation rate for each transition are dependent

on the spatially varying magnetic field strength and direction, respectively. In order

to determine Ωe←g, the LIF-laser polarization must be projected onto the coordinate

frame of the local magnetic field and then expressed in the spherical tensor basis

(Sec. 3.3.1). The largest coupling in this thesis, Ω ≈ 0.375γ, occurs while imaging

with LC/RC polarization with the local magnetic field parallel to the LIF-propagation

direction. The observed strength of each spectral Zeeman component depends on the

laser polarization and P (τ = 0).

In Eq. 3.7, the effects of the magnetic fields, the LIF-laser intensity and polariza-

tion, and electron-spin polarization are contained within pe, which is calculated using

the following set of REs that describe the transfer of ion population between states

due to photon scatter and spontaneous decay, including decay into the metastable



68

2D3/2 manifold, which occurs with rate γD = 9.5× 106 s−1 [87].

∂pg
∂t

=
∑

e

−Reg(pg − pe) + γegpe

∂pe
∂t

=
∑

g

(Reg(pg − pe)− γegpe)− γDpe.

(3.40)

The REs are solved using a 4th-order Runge-Kutta method with a fixed timestep

dτ = 0.25γ−1 for τ < 4γ−1 to capture the initial rise and dτ = 2γ−1 at later times

to capture the longer timescale changes due to optical pumping. The RE formal-

ism is analogous to the rate equations introduced for the two-level ion in Sec. 3.3.3,

where the time dependence of ion coherences, which are present in an optical Bloch

treatment, are neglected, which is justified because γ−1 ≪ τE. However, the REs in

Eq. 3.40 additionally neglect the coherences between states not directly coupled by

the LIF laser, which are typically at least an order of magnitude smaller than those

that are coupled. The systematic errors associated with this treatment of the coher-

ences is quantified in Sec. 3.8 through comparison of the REs with exact solutions to

the master equation (Eq. 3.30) for LIF of Sr+.

This treatment also neglects velocity-changing collisions, which is justified us-

ing combined molecular-dynamics and quantum-trajectories (MDQT) simulations for

typical experimental densities n = 106−109 cm−3 (Sec. 3.6). Because transfer between

different velocity classes can be neglected, the vx and ∆ dependence of pe can in prac-

tice be reduced to a dependence on the Doppler-shifted laser detuning ∆′ = ∆− kvx.

The REs are solved for pe(∆
′, τ) at a distribution of ∆′ values and then the solutions

are interpolated and convolved with the Maxwell-Boltzmann distribution of detunings

to find p̄e(∆, τ). We also confirm the validity of this approach with a RE formalism

that includes collisions through a Bhatnagar–Gross–Krook collision term (Sec. 3.6).
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3.5 Experimental Validation

The LIF model for ions in a magnetized UCNP (Eqs. 3.7 and 3.38−3.40) can be fit

to local LIF spectra to extract measurements of n, vx,hyd, Ti, and P . In this section,

we discuss how these plasma characteristics manifest in the spectrum qualitatively

and use experimental data to validate the model’s determination of laser couplings

between the magnetic sublevels in Fig. 3.1b, which allows for the measurement of the

electron-spin polarization that the ions inherit from the precursor atoms, and optical

pumping of ions to states not driven by the LIF laser.

3.5.1 General Characteristics of LIF Spectra

Figure 3.4 demonstrates how the LIF spectra depend on the various plasma pa-

rameters for a plasma imaged a short time after photoionization (t = 4µs), when

the plasma expansion velocity is still small, and at a later time (t = 40µs) when

the plasma has developed significant expansion velocity in peripheral regions of the

plasma. Through the Doppler effect, vx,hyd and Ti manifest as a mean shift and

broadening of the single-particle lineshape, respectively, and the amplitude of the

spectrum scales with n. The spin polarization P is derived from the relative strength

of the Zeeman components associated with each ground state. These parameters are

extracted from fits to the spectra with Eqs. 3.7 and 3.38−3.40.

At the field null x ≈ y ≈ z ≈ 0 (Fig. 3.4(left)), where the LIF transitions are

degenerate and hydrodynamic fluid velocity is small, the spectra are composed of a

single spectral feature that is centered at the unperturbed 5s 2S1/2 − 5p 2P1/2 reso-

nance frequency. The narrowing of the spectrum from t = 4µs to t = 40µs reflects

decreasing ion temperature as the plasma expands, which is expected for adiabatic

expansion under predominantly hydrodynamic conditions. In a non-central region
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x = 0.05 mm, y = 0 mm x = -3 mm, y = 0 mm

4 s

40 s

Figure 3.4 : LIF spectra of regions centered near the field null (left) and at x =
−3mm, y = 0mm (right) recorded with linear LIF-laser polarization for a UCNP
with Te(0) = 40K. The legend indicates time after photoionization and the spectra
are normalized to the same amplitude and offset in the vertical scale for clarity.
The spectral area scales with plasma density (n). Through the Doppler shift, the
hydrodynamic fluid velocity (vx,hyd) and ion temperature (Ti) manifest as a mean
shift and broadening of the spectrum, respectively. Different Zeeman components
are unresolved near the field null (left), but away from the plasma center (right) the
splitting is resolved. The resonance positions of individual transitions are marked by
ticks with color matching the corresponding transitions in Fig. 3.1b. Note that the
Zeeman splitting is smaller for transitions initiating from the same ground state. The
relative strengths of the resolved Zeeman components are sensitive to the electron-
spin polarization of the ions. For these data, the majority of the ions occupy the
field-aligned mj = +1/2 ground state at the beginning of the excitation period, and
transitions from this initial state are stronger. Polarization persists throughout the
expansion. Lines are fits to spectra using Eqs. 3.7 and 3.38−3.40. Reused with
permission from [86]. Copyright 2022 by the American Physical Society.

along the x axis (Fig. 3.4(right)), the transitions are Zeeman-shifted according to the

local magnetic field strength. For the linear imaging polarization used for this data,

the couplings for each σ transition are equal, and the asymmetry in the strength of

the different Zeeman components indicates a high degree of spin polarization. Fur-

thermore, at t = 40µs, the asymmetry is slightly lower, indicating that the ion spin
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polarization at this location has decreased with time. The fits with Eqs. 3.7 and

3.38−3.40 shown in Fig. 3.4b demonstrate that the polarization has decreased from

P = 0.73 ± 0.07 at t = 4µs to P = 0.63 ± 0.03 at t = 40µs. vx,hyd increases with

time, as indicated by the larger mean shift of the spectrum at later time.

3.5.2 Electron-Spin Polarization

Fig. 3.5 shows measurements of a UCNP after 26µs of expansion in the biconic cusp

field, recorded using LC, linear, and RC polarization (left, middle, and right, re-

spectively). The 500 ns excitation period is sufficiently small so as to minimize the

impact of optical pumping. The top row shows a spatial map of the spectral area

(integrated over LIF-laser detuning), Fint(x, y) =
∫

FR(x, y,∆)d∆ for regions (R)

with size δx = 0.1mm and δy = 0.2mm. For linear polarization, the σ transitions

are driven equally and the integrated spectra are insensitive to P and the image spa-

tial distribution matches that of the UCNP density distribution. However, for images

recorded with LC and RC polarizations, the σ transitions are driven unequally. Imag-

ing light with RC polarization will have a stronger σ− drive for x > 0 and a stronger

σ+ drive for x < 0 because the local field direction reflects across the y axis (and

vice versa for LC polarization). The asymmetry of the images for circular polariza-

tion shows that the ions predominantly occupy the field-aligned Zeeman ground state

(mj = +1/2 for quantization axis along the local field).

The bottom row of Fig. 3.5 shows FR(∆), the spectrum within a local region R

defined by x = 2.6 ± 0.1 mm and y = 2.07 ± 0.2mm. The solid yellow lines are

fits of Eqs. 3.7 and 3.38−3.40 to the measured FR. All three fits in Fig. 3.5 are

constrained to use the same n, Ti, vx,hyd, and P fit parameters. The good agreement

with the data validates the calculation of Rabi couplings and strongly determines the
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Figure 3.5 : LIF data for a magnetized UCNP with Te(0) = 20K recorded at t = 26µs
after photoionization with LC (left), linear (middle), and RC (right) lab-frame po-
larization of the imaging laser. The top row shows the integral of the fluorescence
spectrum,

∫

FR(x, y,∆)d∆, for laser detuning ∆ with arbitrary units (the color bars
are the same for each image). The image asymmetry along the x axis for LC and RC
polarizations occurs because the σ± transitions are driven unequally, and is therefore
reflective of the ion spin polarization. The bottom row plots the measured LIF spec-
trum (blue dots) averaged over a region (red circles) defined by x = 2.6 ± 0.1mm
and y = 2.07± 0.2mm, where the magnetic field amplitude is 42G, as a function of
∆. The data is well described by fits of Eqs. 3.7 and 3.38−3.40 (yellow lines), for
which n, vx,hyd, Ti, and P are constrained to be the same for all three imaging polar-
izations. The agreement validates the calculation of Rabi couplings for each imaging
polarization (see appendix) and demonstrates the plasma is spin polarized. Reused
with permission from [86]. Copyright 2022 by the American Physical Society.

polarization, which for this region is P = 0.74±.014. The spin polarization of the ions

is derived from the atomic gas from which the plasma is formed. The 3P2 precursor

atoms in the magnetic trap predominantly occupy the mj = +2 magnetic sublevel
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[71], in which both valence electrons are field-aligned. Following photoionization, the

liberated electron carries away the angular momentum of the ionizing photon and the

remaining valence electron is unperturbed, such that the ions inherit the electron-spin

polarization from the precursor atoms.

Fig. 3.6 shows the extracted values of n (left) and P (right) from constrained fits to

data such as in Fig. 3.5 for a plasma after t = 26µs of plasma expansion. The plasma

is highly electron-spin polarized in peripheral regions where the magnetic fields are

large, reaching up to P ≈ 0.8. The spin polarization decreases for ions closer to the

field null, which contains a pocket of weakly polarized ions with P ≈ 0.2 within a

1mm radius of the field null.

The strengths of the Zeeman components depend on the decomposition of the

LIF-laser polarization in the coordinate frame of the local magnetic field and the ion

spin polarization at the beginning of excitation. These two effects must be decoupled

in order to obtain accurate measurements of P . This can be done using linear LIF-

laser polarization anywhere the transitions are resolved, but is not possible in regions

of small magnetic field because the asymmetry in the spectrum cannot be resolved.

Imaging with LC and RC polarizations provides important information in regions

of small magnetic field because the couplings to the σ transitions, and therefore,

each ground state, are unequal. However, along the y axis where the transitions are

unresolved, the couplings to the σ transitions are equal for all ǫ̂ and the spectra are

insensitive to P . The impact of this issue is mitigated by choosing to define the grid

of analysis regions so as to not have regions centered on x = 0, although central

regions adjacent to the y axis are still more likely to yield poor fit results for P (Fig.

3.6(right)). For this reason, we do not show fit results for P within |x| < 0.15mm

and |y| < 2.5mm.
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Figure 3.6 : Measurements of plasma density (n, left) and spin polarization (P ,
right) for a plasma with Te(0) = 20K after t = 26µs≈ τexp of plasma expansion, but
before the onset of magnetic trapping. The plasma is highly electron-spin-polarized
in peripheral regions where the magnetic fields are large, reaching up to P ≈ 0.8. The
spin polarization decreases for ions closer to the field null, which contains a pocket of
weakly polarized ions with P ≈ 0.2 within a 1mm radius of the field null. The LIF
model is insensitive to P within |x| < 0.15mm and |y| < 2.5mm for these plasma
conditions, so fit results are not shown in these regions. Density is expressed in units
of 108 cm−3. Reused with permission from [86]. Copyright 2022 by the American
Physical Society.

Figure 3.7 demonstrates the ability to resolve P for regions that lie along x = y

for the same data shown in Fig. 3.6. The Rabi coupling to each Zeeman component

in the x-y plane for a given polarization only depends on the angle that the local field

subtends from the y axis, θ = tan−1(2x/y), and does not change with distance from

plasma center along x = y. For RC polarization, the coupling to the σ− transition

is ≈ 9× larger than the σ+ coupling for x > 0 (and vice versa for LC polarization).

Furthermore, the coupling of RC polarization to the σ− transition is equal to the

coupling of LC polarization to the σ+ transition, so the asymmetry in signal strength

recorded for the respective polarizations only depends on P . Near the field null

(Fig. 3.7(left)), the signal strength for LC and RC polarization are nearly equal, which
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Figure 3.7 : Constrained fits of LIF data recorded with LC, linear, and RC laser
polarization to Eqs. 3.7 and 3.38−3.40 for a UCNP with Te(0) = 20K after t = 66µs
of plasma evolution in regions that lie along x ≈ y. The resonance positions of
individual transitions are marked by ticks with color matching the corresponding
transitions in Fig. 3.1. The x position along x ≈ y is indicated above each column.
The subplots in each column share a common y axis. The relative strength of coupling
to the σ transitions does not change with distance along x = y, so the decrease in
relative signal strength for LC polarization as a function of x indicates increasing P .

results in a small value of P = 0.11. With increasing distance from the plasma center

along x = y, the decreasing signal strength for LC polarization indicates an increase

in P . The cause of the gradient in spin polarization is an open question and will be

the subject of future study. However, the high degree of polarization away from the

plasma center for t = 26µs of plasma expansion implies that the collisional spin-flip

rate is low, which suggests that the polarization may provide valuable information for

studying plasma flow and diffusion. The interrelated spatial and temporal dynamics
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of the plasma density and spin polarization are discussed in more detail in Chap. 5.

3.5.3 Optical Pumping

One important aspect of the RE model is that it accounts for the optical pumping

of ions into states that are dark to the LIF laser. Optical pumping occurs when the

scattering rate out of the two LIF ground states is unequal or when ions decay into

the 2D3/2 manifold, resulting in a decrease in the LIF signal collected per unit time

during excitation. Differential scattering rates can develop any time the transitions

are resolved or when the couplings to the σ transitions differ. For the experiments

described here, optical pumping is greatest in regions along the x axis where the

Zeeman components are resolved because this is where the LIF-laser intensity is the

highest.

Fig. 3.8 demonstrates the impact of optical pumping in a magnetically trapped

UCNP [50] in a central (left) and non-central (right) region probed 100µs after plasma

creation with linear laser polarization. At the field null, the scattering rate out of each

LIF ground state is equal and ions are only lost to the off-resonant 2D3/2 manifold,

resulting in a 20% decrease of LIF signal per unit time for 2000 ns excitation compared

to 250 ns excitation. Far from the field null, the transitions are resolved and the effects

of pumping are more significant, with half the signal lost during the same excitation

period due to optical pumping between LIF ground states. In both cases, optical

pumping is only significant when the LIF laser is near resonance with an optical

transition. The solid lines in Fig. 3.8 are fits to the local spectra and the density

extracted from the fits to Eqs. 3.7 and 3.38−3.40 for each excitation time in the

respective regions agree within 10% when optical pumping is accounted for.

Properly accounting for optical pumping is important for accurate measurements
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x = -0.05 mm, y = 0 mm x = -3.65 mm, y = 0 mm

Figure 3.8 : LIF signal recorded 100µs after plasma creation with linear laser polar-
ization, illustrating optical pumping of ions into off-resonant states at the field null
(left) and far from the field null (right) for a plasma with Te(0) = 40K. Two different
excitation times are used, as indicated in the legend, and the signal is divided by
the excitation time. Near the field null, where the LIF transitions are degenerate,
the signal loss on resonance with increasing excitation time reflects decay of excited
ions into the off-resonant 2D3/2 manifold. Away from the field null, where the LIF
transitions are resolved, the loss of signal on each resonance feature is more severe
due to optical pumping into the ground state that is not resonantly excited. Tick
marks are the same as in Fig. 3.4. Reused with permission from [86]. Copyright 2022
by the American Physical Society.

of the spatial distribution of the plasma density. Optical pumping is dependent on

the Rabi coupling to each Zeeman component, which varies with the local direction

of the magnetic field and the local laser intensity, and whether or not the transitions

are resolved. In Sec. 3.10, a steady-state model for pk(τ) is introduced to describe

LIF under excitation conditions where fewer than one photon is scattered per ion

(i.e., in the validity of Fermi’s golden rule). Using this FGR model to extract the

plasma density under conditions where optical pumping is significant leads to warped

spatial distributions of the plasma density, primarily near the field null where optical

pumping only occurs due to decay to the 2D3/2 state.
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Figure 3.9 plots the density distributions along the x (top) and y (bottom) axes

obtained by treating pk(τ) with the FGR (left) and RE (right) models for the same

data shown in Fig. 3.8. The density extracted with the FGR model display a sys-

tematic decrease of plasma density with excitation duration away from the plasma

center because optical pumping among LIF ground states leads to significant loss of

resonant signal. For |x| . 0.75mm (B . 10G), the loss is less significant because

ions are only pumped to the 2D3/2 state and this manifests as a peak in the density

distribution near the field null. Along the y axis, the systematic dependence of the

density extracted with the FGR model is less significant. One reason for this is that

the Zeeman shifts of π transitions, which are primarily driven near the y axis, are

smaller than for the σ transitions. Combined with the weaker field gradient along y,

the transitions are not sufficiently resolved for significant optical pumping in a much

larger region than along x. Furthermore, the LIF-laser intensity decreases along the y

axis, so the peak laser intensity does not drive the ions in regions where the transitions

are resolved.

A similar study of optical pumping was conducted when imaging with LC polar-

ization. However, unlike when imaging with linear polarization, the Rabi couplings

to the σ transitions are unequal everywhere except for the y axis, so optical pumping

can significantly alter the symmetry of the spectrum with respect to unperturbed

resonance and the signal amplitude is dependent on both n and P . This is particu-

larly relevant along the x axis, where the laser drives only a single σ transition. To

avoid errors in density extraction due to proportionality of the signal strength with

P , constrained fits for P were obtained, as discussed in Fig. 3.5 using the REs, and

P was fixed to the value in the constrained measurements while fitting spectra taken

with LC polarization for n.
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Figure 3.9 : Extraction of plasma density (n) along the x (top) and y (bottom) axes
for the same data shown in Fig. 3.8 using fits to the fluorescence model in Eq. 3.7 with
a steady-state model of ion state populations given by Eqs. 3.48 (left) and the rate
equation model given by Eqs. 3.38−3.40 (right). The legend indicates the excitation
duration. The density extracted by the steady-state model, which neglects optical
pumping between LIF ground states, displays a systematic decrease with excitation
duration. No such dependence is observable for the density extracted by the RE
model, providing further validation that of the RE approach. The effects of optical
pumping are greatest along the x axis for |x| > 0.75mm because the transitions are
resolved and the laser intensity is highest along the x axis.



80

-5 0 5

� ����

0.2

0.3

0.4

0.5

0.6

0.7

n
 (

1
0

1
4

�

-3
)

Steady-state

-5 0 5

x (mm)

0.3

0.4

0.5

0.6

0.7

� !

0.9
Rate Equation

-5 0 5

y (mm)

0.2

0.3

0.4

0.5

0.6

0.7

� !

0.9

n
 (

1
0

1
4

�

-3
)

-5 0 5

y ����

0.2

0.3

0.4

0.5

0.6

0.7

� !

0.92"# $%
"## $%
7"# $%
1000 $%
&2"# $%
&"## $%
&7"# $%
2### $%

Figure 3.10 : Extraction of plasma density (n) along y = 0.52mm (top) and x =
−2mm (bottom) using fits to the fluorescence model in Eq. 3.7 with a steady-state
model of ion state populations given by Eqs. 3.48 (left) and the rate equation model
given by Eqs. 3.38−3.40 (right) for similar conditions as in Fig. 3.9, except using LC
polarization. The legend indicates the excitation duration.

Figure 3.10 demonstrates the validity of the REs for LC polarization for y =

0.52mm (top) and x = −2mm (bottom) for a UCNP with similar conditions to

Fig. 3.9. Here, we avoid showing transects along either axis to avoid including regions
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Figure 3.11 : Characterizing the severity of optical pumping during LIF. (left) Sys-
tematic loss of resonant LIF signal per unit excitation for the same region (R) as in
Fig. 3.8(right). The loss increases with the Rabi coupling to the σ− transition (Ω3←2,
indicated in the legend) and the excitation duration τE. (right) Scaling of Ω3←2 with
the LIF-laser intensity (I) along the x axis. The coupling is greater for LC polar-
ization due to the way the LIF-laser polarization projects onto the local magnetic
field.

where P cannot be reliably measured. For y = 0.52mm, where the Rabi coupling to

the σ transitions for LC polarization (σ+ for x > 0 and σ− for x < 0) are stronger than

for linear LIF-laser polarization, the systematic decrease with excitation duration for

the density extracted by the FGR model is slightly larger than for linear polarization.

Near the y axis, the σ transitions are driven equally and the states are not sufficiently

resolved to allow for optical pumping. Along x = −2mm, the systematic decrease of

density with excitation duration for the FGR model does not change significantly with

y position because the transitions are resolved everywhere. Once again, the density

extracted with the REs (Fig. 3.10(right)) do not display the systematic dependence

observed in the density extracted with the FGR model.

For experiments seeking to avoid significant optical pumping, it is helpful to quan-
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tify the loss of resonant LIF signal per unit excitation, which is the greatest along

the x axis where the transitions are most easily resolved and the Rabi coupling is the

largest (x < 0 for LC and x > 0 for RC). Figure 3.11(left) plots F (xR, yR,∆32)/τE

as a function of τE for several values of Ω3←2, as indicated in the legend, for the

same region (R) shown in Fig. 3.8(right). For context, Fig. 3.11(right) plots Ω3←2 as

a function of the LIF-laser intensity (I). The coupling for circular LIF-laser polar-

ization is higher than linear polarization along the x axis due to the way it projects

onto the local magnetic field. For the data shown in Fig. 3.5, which was taken with

an effective laser intensity Ī = 85W/m2, the resonant signal loss per unit excitation

was 18(30)% for linear(circular) polarization, respectively.

3.6 Collisional Effects During LIF

Rapid velocity-changing collisions (VCCs) are a hallmark of UCNPs and strongly

coupled plasmas in general [34, 57], and can influence the time evolution of inter-

nal quantum states of laser-driven systems. VCCs are strong collisions that result

in velocity changes of ∼ vth =
√

kBT/m, for an ensemble with temperature T . On

average, each collision effectively randomizes ion velocities within the thermal dis-

tribution and causes non-equilibrium velocity distributions to equilibrate towards a

Maxwellian. The VCC rate (µ) in plasmas is proportional to the ion plasma oscillation

frequency ωpi =
√

ne2/miǫ0 and in [34] was measured to be ∼ 0.2ωpi for Γ ∼ 3, which

is typical for UCNPs following DIH [49]. In [57], a combined molecular-dynamics and

quantum-trajectories (MDQT) code was developed to describe laser cooling of the

ions in a UCNP and VCCs were shown to collisionally suppress the development of

velocity-dependent coherent dark states.

Coherent effects make a minimal impact on LIF of UCNPs because the coher-
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ences equilibrate in a few γ−1 ≈ 7 ns, which is much faster than typical excitation

times of a few 100s of ns. However, VCCs can become important during LIF under

excitation conditions where the velocity dependence of pk(vx, τ) for the driven LIF

ground state becomes non-Maxwellian. This typically occurs under conditions where

optical pumping is significant and the Doppler width σD = k
√

kBTi/mi exceeds the

width of the excitation rate γtot. Optical pumping starts to occur when many pho-

tons are scattered per ion (RegτE > 1). Under these conditions, the resonant portion

of the driven LIF ground state’s velocity distribution is depleted as those ions are

pumped into off-resonant states, causing the measured LIF signal to decrease with

τ , as characterized in Fig. 3.11. In the absence of collisions, the off-resonant ions in

the driven ground state will remain dark to the imaging laser. However, if VCCs oc-

cur rapidly enough, the velocity distribution for each state will equilibrate towards a

Maxwell-Boltzmann distribution during LIF, effectively increasing the measured sig-

nal by providing optical access to the nominally off-resonant portion of the velocity

distribution.

The effects of collisions on LIF were quantified by adapting the MDQT code in [57]

to simulate p̄k(τ) for LIF of a magnetized UCNP [86]. The MD portion of the code is

a particle-in-cell method that evolves the positions and velocities of ions interacting

via the Yukawa force. The QT portion of the code evolves the wave function |ψ(t)〉 for

each ion under the influence of a non-Hermitian effective Hamiltonian that includes

the closed system Hamiltonian for LIF (given by Eq. 3.43) and spontaneous emission

between states driven by the LIF laser (Fig. 3.1b). Decay from the excited 2P1/2 state

to the metastable 2D3/2 dark state is grafted onto the QT formalism through the

inclusion of a single basis state |5〉, which states |3〉 and |4〉 can decay to with rate

γD. This approach, rather than including all seven magnetic sublevels, is justified
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because the LIF laser does not couple to this manifold.

The MDQT simulations of p̄k(τ), computed as the ensemble-averaged diagonal

elements of the density matrix ρ(τ) = |ψ(τ)〉〈ψ(τ)|, were found to be in good agree-

ment with the REs in Eq. 3.40 modified to include a Bhatnagar-Gross-Krook collision

term (Fig. 3.12)

∂ρk(vx, τ)

∂t
= −µ[pk(vx, τ)− p̄k(τ)G(vx)], (3.41)

which describes the equilibration of pk(vx, τ) towards a Maxwellian with collisional

relaxation rate µ, which is extracted from MD simulations in [95] that were experi-

mentally verified for strongly coupled plasmas in [34]. The value of µ depends on n

and Ti. For a plasma with Ti = 1K, the ion-ion collision rate is µ = 5.2× 104 s−1 for

n = 107 cm−3 and µ = 1.94× 107 s−1 for n = 1011 cm−3.

Figure 3.12 compares MDQT simulations of the instantaneous fluorescence signal

per unit density and unit time (dF/dt) with predictions from the collisional RE (REK)

model as a function of plasma density (indicated in the legend) for a plasma with

Ti = 1K in a magnetic field of 15G that is imaged with I = 100W/m2 on resonance

with the π transition out of state |2〉. At early excitation times (τ < 100 ns), optical

pumping is negligible and there is no density dependence. At later times during

excitation, collisional effects manifest as an enhanced fluorescence signal compared to

the collisionless model (n = 0) for higher plasma densities.

Collisions are computationally challenging to incorporate in the LIF fit model, so

it is best to avoid their influence on LIF entirely by choosing the effective LIF-laser

intensity (Ī) and excitation duration (τE) to minimize the impact of optical pumping.

Figure 3.13 plots the relative error between the peak plasma signal with (FREK) or

without (FRE) the inclusion of collisions for a UCNP with n = 5 × 109 cm−3 that

is imaged with Ī = 100W/m2 as a function of position along the x axis for several
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Figure 3.12 : Effect of collisions on instantaneous fluorescence signal per unit density
and unit time (dF/dt) as a function of time during LIF (τ) for a plasma with ion
temperature Ti = 1K in a magnetic field of 15G. Under these conditions, the width of
the velocity distribution is broader than the excitation rate. The MDQT simulations
(markers) and solutions to the collisional rate equations (REK, lines) are in good
agreement. For τ < 100 ns, optical pumping has yet to occur and there is no density
dependence. At later times, collisional effects provide optical access to the nominally
off-resonant portion of the velocity distribution and manifest as an enhancement of
the fluorescence signal. The legend indicates the plasma density, n.

values of τ (left, Ti = 2K) and Ti (right, τE = 2µs), as indicated in the legend. The

collision rate is highest early in the plasma lifetime because the density decreases

with expansion. The plasma density does not exceed the density used in Fig. 3.12 for

data shown in this thesis, so these results represent an upper limit on the influence

of collisions.

As expected, collisional effects generally increase with τ and Ti and are lowest near
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Figure 3.13 : Relative error in the peak LIF signal for population transfer models
including (FREK) and neglecting (FRE) collisions in a plasma with n = 5× 109 cm−3

that is imaged with Ī = 100W/m2. The discrepancy is plotted as a function of
position along the x axis for several values of τE (left, Ti = 2K) and Ti (right,τE =
2µs).

the center, where ions are only optically pumped through the slow leak to the 2D3/2

state. At large distances from the plasma center (x & 2mm), where the transitions

are fully resolved, the error displays no dependence with x position. However, at

intermediate positions (x ≈ 0.5−1mm), collisional effects are the largest because the

Zeeman components are partially resolved so as to allow for optical pumping, but the

splitting is sufficiently small that the thermal distribution allows for both σ transitions

to be driven simultaneously. In this case, collisions influence LIF for longer periods

because the resonant portion of the velocity distribution can never be fully depleted;

the excited state populations reach an equilibrium value that is enhanced by collisions

(as is the case in Fig. 3.12). For the conditions in Fig. 3.13(left), collisions lead to no

larger than a 3.2% enhancement of the LIF signal for τE < 500 ns. For data shown in

this thesis, the plasma density and ion temperature are smaller than in Fig. 3.13 in
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the partially resolved region where collisions are most important, providing further

justification for the neglect of collisions.

3.7 Justifying the Use of an Effective LIF-Laser Intensity

The LIF spectrum model given by Eq. 3.7 computes the spectrum within a volume

element V ≈ δxδyw, where A = δxδy is a user-defined analysis area within the x-y

plane and w is the 1/e2 diameter of the LIF-laser along the z axis. Eq. 3.7 makes

the simplifying approximation of evaluating all quantities except for the LIF-laser

intensity at the center of the volume V in order to avoid the significant computational

overhead that spatial integration would impose in order to account for variation of ~B

and I across the local volume element. A is chosen to be sufficiently small such that

variation of quantities within the x-y plane can be neglected. However, the imaging

process inherently averages over the camera line of sight and significant variation of

I along the z axis cannot be avoided. The most significant impact of this averaging

is in the amount of optical pumping the model predicts. In order to account for

this variation, Eq. 3.7 uses an effective laser intensity Ī = 0.45Imax that is chosen to

minimize discrepancy between Eq. 3.7 and the following realistic model that integrates

over the camera line of sight.

F (x, y,∆) = AC ′p→s

∫ τE

0

dτ

∫ ∞

−∞

dz
∑

e,g

np̄e(z)γegξeg, (3.42)

where pe(z) is explicitly stated as a function of z in order to emphasize that the

variation of I and ~B are accounted for. The photon-to-signal conversion factor in

Eq. 3.42 is denoted with a prime to differentiate it from that of Eq. 3.7. The photon-

to-signal conversion factors in Eq. 3.42 (C ′p→s) and Eq. 3.7 (Cp→s) are chosen to match

predictions of these calculations to experimentally observed signal levels at small
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exposure time and with no external magnetic fields so as to avoid the effects of

optical pumping. The density assumed for this procedure is determined by a density

calibration that relies on the density dependence of DIH [41]. Cp→s and C ′p→s differ

because the two equations calculate the volume contributing to the signal differently.

Figure 3.14 : Comparison of the LIF models given by Eq. 3.7 (assumes z = 0 with
an effective LIF-laser intensity) and Eq. 3.42 (realistic model with spatial averaging)
under excitation conditions where optical pumping is minimal (left) and significant
(right) for the same spatial region and ion temperature (300mK) as in Fig. 3.8b. The
two models are in good agreement for both excitation conditions and the relative
error in the peak signal is less than 2.5%. The blue line is slightly thicker in order to
improve visibility.

Fig. 3.14 compares Eqs. 3.7 and 3.42 for excitation conditions where optical pump-

ing is minimal (left) and significant (right) for the same spatial region and ion tem-

perature (300mK) as in Fig. 3.8b. Imax = 50W/m2 is typical for the edges of the

CCD camera near |y| ≈ 5mm and Imax = 190W/m2 is the maximum intensity used

in this work. The models are found to be in good agreement for both excitation

conditions with relative error less than 2.5%. In the absence of optical pumping,
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the agreement is expected and is independent of the choice of Ī due to the external

density calibration. Ī is chosen to minimize the difference between the two models

when optical pumping is significant. For a given value of Ī, the discrepancy between

the two models will vary slightly with ion temperature because as the temperature

increases the ensemble-averaged scattering rate decreases slightly. The variation with

temperature is greatest when optical pumping is significant. For the conditions of

greatest optical pumping in this work (Fig. 7(right) and Fig. 3b) and the chosen

value of Ī, the discrepancy between the two models varies from 0.92% at Ti = 1K to

4.37% at Ti = 100mK. Across the relevant parameter regime for this experiment, the

discrepancy does not exceed 5% and is typically less than 2.5%.

3.8 Neglecting Coherent Effects During Population Transfer

The methods from Sec. 3.3, which model LIF for a two-level ion in a magnetic field,

can be extended to describe LIF for Sr+. The states coupled by the LIF laser are

shown in Fig. 3.1b and the Hamiltonian can be formed in the rotation wave approx-

imation analogously to that in Eq. 3.29:

H̃LIF =
∑

k

~δk|k〉〈k| −
∑

e

~∆′|e〉〈e|

− ~

2

∑

e,g

[

Ωe←g|e〉〈g|+ Ω⋆
e←g|g〉〈e|

]

,

(3.43)

where e and g indexes the excited (|3〉, |4〉) and ground (|1〉, |2〉) states, respectively,

and k indexes all four states.

The evolution of the density matrix is described by the following set of equations,
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which result from evaluating the master equation (ME, Eq. 3.30) forHLIF in Eq. 3.43:

ρ̇ee = − i

2

∑

g

(Ω⋆
e←gρeg − Ωe←gρge)− (γ + γD)ρee (3.44)

ρ̇gg = +
i

2

∑

e

(Ω⋆
e←gρeg − Ωe←gρge) +

∑

e

γegρee (3.45)

ρ̇eg =(i∆eg − (γ + γD)/2)ρeg +
iΩe←g

2
(ρgg − ρee) +

i

2
(Ωe′←gρee′ − Ωeg′ρg′g), (3.46)

where g′ 6= g and e′ 6= e (for ρ̇32, ρee′ = ρ34) and the equations for the coherence

between the two excited (ρee′) and ground (ρgg′) states are not explicitly listed.

These equations are similar to those for the two-level ion (Eqs. 3.31−3.33), where

the population transfer between state |g〉 and |e〉 is governed by terms of the form

Ω⋆
e←gρeg−Ωe←gρge and the diagonal elements consist of a superposition of the transfer

and decay terms. Decay from the 2P1/2 state to the 2D3/2 is grafted on through

additional loss of population and coherence at a rate γD. Aside from this, the only

other difference is the last term in Eq. 3.46, which results from the coherence terms

ρee′ and ρgg′ , respectively.

The REs given by Eq. 3.40 can be derived from Eqs. 3.44−3.46 by neglecting the

coherence terms between states not directly coupled by the LIF laser (ρee′ = ρgg′ = 0)

in the limit t ≫ γ−1 (ρ̇eg = 0). These assumptions lead to small systematic errors

in the instantaneous fluorescence signal dF/dt at early times during excitation (τ ≈

10γ−1), as demonstrated in Fig. 3.15 for LIF in a magnetic field of 15G with Ω3←2 =

0.22γ. When the LIF laser is on resonance, the fluorescence signal is overestimated

by the REs for τ < 10γ−1, but subsequently underestimates the signal as the RE

solutions relax towards the MEs over the next τ ≈ 60γ−1 ≈ 500 ns. In contrast,

when the laser is off resonance, the REs fail to capture rapid oscillations of the state

populations for τ < 10γ−1, which results in a systematic underestimation of the LIF

signal.
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Figure 3.15 : Time evolution of the instantaneous fluorescence signal (dF/dt) for a
single ion during LIF in a magnetic field of 15G with Ω3←2 = 0.22γ. When the
LIF-laser is resonant with the transition (left), the rate equations (REs) overestimate
the LIF signal for t < 10γ−1 compared to the exact treatment by the master equation
(ME), but overestimate the signal afterward and the two models converge together
at ≈ 60γ−1 ≈ 500 ns. Off resonance (right), the LIF signal is underestimated by the
REs because they fail to capture rapid oscillations of the state populations in the first
10γ−1 ≈ 100 ns of evolution.

The systematic errors resulting from this treatment of the coherences are observed

through the time-integrated fluorescence signal, F . Fig. 3.16 compares the LIF signal

that results from treating the state populations with the rate equations (FRE) and the

master equation (FME) as a function of ∆′ for several values of the excitation duration.

Here, the Rabi coupling to each transition is Ω = 0.22γ. As discussed in Fig. 3.15,

the LIF signal is overestimated near resonance of each Zeeman component, which is

indicated by the markers with color corresponding to the transitions in Fig. 3.1, but is

underestimated away from resonance. The discrepancy is largest for short excitation

(τE = 250 ns), but decreases with excitation time because the RE and ME solutions
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Figure 3.16 : Comparison of the LIF signal predicted by Eq. 3.7 derived by treating
the state populations with the rate equations (FRE) and optical Bloch (FME) for a
single ion as a function of the Doppler-shifted laser detuning ∆′ for several values
of the excitation duration, as indicated by the legend. The markers indicate the
resonance position of the transition of corresponding color in Fig. 3.1, which are
driven equally here with Ω = 0.22γ in a magnetic field of 30G. The LIF signal is
overestimated by the rate equations near resonance of each Zeeman component, but
is underestimated away from resonance.

converge for t >> γ−1. The error when resonant with the σ transitions (purple for

the σ decay channel are larger. The levels of error shown in Fig. 3.16 do not change

significantly with the coupling to the transition for Ω < 1, as is the case for all data

shown here.

3.9 Measuring the Magnetic Field Amplitude

The local magnetic field strength can be measured using LIF by additionally setting

the field amplitude (B) as a free parameter in the constrained fits of Eqs. 3.7 and

3.38−3.40 to LIF data recorded with LC, linear, and RC polarization, as described
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in Fig. 3.5. Accurate measurements of B can be obtained anywhere that the Zeeman

components are resolved or where the spectra are asymmetric with respect to ∆′ = 0

(i.e., when P 6= 0 or when the couplings to the σ transitions are unequal). The latter

condition arises because both B and Ti will symmetrically broaden the spectrum

when the Zeeman components are symmetric and unresolved. Thus, the spatial region

where B cannot be resolved roughly corresponds to where the model is insensitive to

P (|x| < 0.15mm and |y| < 2.5mm; Fig. 3.6).

A UCNP after the onset of magnetic trapping (t & 2τexp) is best suited for local

measurements of B because the ion temperature has decreased due to adiabatic cool-

ing, which allows the transitions to be resolved by smaller fields, and the plasma has

expanded to provide sufficient LIF signal in peripheral regions of the camera FOV.

Fig. 3.17 shows constrained fits for n (left) and B (middle) for a magnetized UCNP

with Te(0) = 20K after t = 110µs≈ 4τexp of evolution. The plasma pressure (nkBTe)

is significantly smaller than the pressure of the external quadrupole magnetic field

(B2/2µ0), so plasma flow is not expected to influence the local magnetic field. The

field measurements were fit to the linear approximation of the quadrupole magnetic

field given by Eq. 2.2 to determine the field gradient along the symmetry axis (B′).

Measurements of B within |x| < 0.15mm and |y| < 2.5mm are unreliable and were

not used for this fit. The linear approximation (Bl) is found to be in good agree-

ment with the experimental measurements, as indicated by the fit residual Bl −B in

Fig. 3.17(right). Six independent measurements of the field gradient were obtained

by fitting LIF data for the same plasma conditions in Fig. 3.17 for evolution times

ranging from t = 52− 176µs, which yielded a value of B′ = 151.5± 0.2G/cm.
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Figure 3.17 : Experimental measurement of the local magnetic field amplitude (B)
using constrained fits to Eqs. 3.7 and 3.38−3.40 for LIF data recorded with LC, linear,
and RC polarization (as in Fig. 3.5) for a magnetized UCNP with Te(0) = 20K at
t = 110µs after photoionization. The experimental measurements were found to be
in good agreement with the linear approximation to the quadrupole magnetic field
(Bl) given by Eq. 2.2, as demonstrated by the fit residual Bl − B (right).

3.10 A Steady-State Model for LIF

Computational efficiency was a major consideration during the development of the RE

model introduced in Sec. 3.4 because the solutions for p̄e are input to the fluorescence

model (Eq. 3.7) for fitting to local LIF spectra. In the previous sections, careful

consideration was given towards the influence of coherent effects, optical pumping,

velocity-changing collisions, and spatial averaging of the LIF-laser along the camera

line of sight, with the purpose of finding the lowest level of sophistication required

to accurately model LIF of a magnetized UCNP. The REs are required in order to

account for optical pumping during LIF and provide a relatively efficient means for

extracting macroscopic plasma characteristics. However, they are not quite efficient

enough to provide real-time analysis during the data taking process.

It is desirable to have a model for LIF that can be used on-the-fly to quickly

assess LIF data during the data taking process. The largest computational expense
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associated with the RE model is solving the REs, so a steady-state model for pe(vx, τ)

would be considerably more efficient. In this section, a steady-state model is intro-

duced to describe LIF in the regime of validity of Fermi’s golden rule, where the

ion state populations have reached equilibrium (t ≫ γ−1) and less than one photon

is scattered per particle. This FGR model inherently does not account for optical

pumping, so it should be used with caution when the latter condition is not satisfied.

However, in the absence of magnetic fields, optical pumping only occurs through a

slow leak to the 2D3/2 state, so as we will show shortly, the FGR model is accurate for

LIF of an unmagnetized UCNP with linearly polarized light after grafting on decay

to the dark state.

The FGR model for LIF of Sr+ makes the simplifying assumption that the satu-

ration of state populations due to laser coupling of one state to more than one other

state are treated independently of one another (i.e., in the two-level picture). In this

case, the fraction of ions transferred from ground state |g〉 to excited state |e〉 is given

by Eq. 3.37 for the two-level ion and the total population in state |e〉 is

pe =
∑

g

Regpg(τ = 0)

γ + γD + 2Reg

, (3.47)

where the sum is over ground states |g〉 = |1〉, |2〉 (Fig. 3.1b), Reg is the scattering

rate given by Eq. 3.39, and pk(vx, τ = 0) = p̄kG(vx) is the population of each ground

state prior to excitation for spin polarization P = p̄2 − p̄1.

For LIF of a magnetized UCNP, optical pumping between LIF ground states

typically needs to be accounted for, so Eq. 3.47 is only valid for short excitation

periods (τE . 200 ns). However, for imaging with linear LIF-laser polarization, errors

introduced due the neglect of optical pumping primarily occur in measurements of n

due to the loss of resonant signal, but not in vx,hyd or P because the σ transitions are
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driven equally and the symmetry of the measured spectrum remains unchanged even

when optical pumping occurs. In the absence of magnetic fields, where the degenerate

π transitions are driven equally with linear polarization, Eq. 3.47 is accurate for longer

excitation periods where decay into the 2D3/2 state becomes significant.

The decay into the dark state can be grafted onto the FGR model with a simple

rate equation approach:

pe(τ) = (1− pD(τ))
∑

g

Regpg(0)

γ + γD + 2Reg

ṗD(τ) = −γD
∑

e

pe(τ)

(3.48)

where pD(τ) = 0 is the population of the dark state prior to excitation. These

equations are solved iteratively with a timestep of 2γ2/γD ≈ 26γ. Here, it is not

strictly necessary to track pg(τ) because the existence of pg(0) in Eq. 3.48 is to

account for the spin polarization; the number of ions transferred from one state to

another depends on the fraction that occupied that state to begin with and the loss

of ions from the cycling transitions is handled by the factor of 1− pD(τ).

Figure 3.18(a) compares the FGR model given by Eqs. 3.48 in the absence of ex-

ternal magnetic fields for linear LIF-laser polarization through comparison with the

REs given by Eqs. 3.40 for resonant excitation with Ω31 = Ω42 = 0.22γ and P = 0.

The excited state populations for each treatment disagree at early times during the

initial rise in population for the REs, but converge after the rate equations reach equi-

librium (τ & 4). The agreement indicates that the FGR model adequately captures

the slow loss of population to the 2D3/2 state. This was demonstrated experimentally

by imaging a UCNP with Te(0) = 40K after t = 75µs of plasma expansion in the

absence of external magnetic fields using peak LIF-laser intensity I0 = 225W/m2

(Fig. 3.19).
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Figure 3.18 : Comparing the FGR and RE models for imaging Ī = 100W/m2 with
linear LIF-laser polarization (a) in the absence of magnetic fields and (b) with mag-
netic fields in a region R defined by x = 2mm and y = 0. The two models agree will
with one another without fields for τ > 50 ns, validating the ability of Eqs. 3.48 to
account for loss of ions to the 2D3/2 state. With magnetic fields, the resonant signal
is 17% lower for the REs, but this loss should not influence measurements of vx,hyd or
P because the symmetry of the spectrum is preserved.

The FGR model is also reasonably accurate for LIF in the presence of magnetic

fields for short excitation periods (τ = 50 − 250 ns). Figure 3.18(b) compares the

FGR and RE models in a magnetic field of 30G for Ω32 = Ω41 = 0.22γ and an

excitation duration τE = 250 ns. The discrepancy between the FGR and RE models

increases with the excitation duration because the FGR model does not account for

optical pumping between the LIF ground states, which occurs primarily on resonance.

However, despite the optical pumping, the symmetry in the spectrum is preserved

for linear LIF-laser polarization because the coupling to the σ transitions is equal

(Ω41 = Ω32). The FGR model can thus be used to extract accurate measurements

for vx,hyd and P . For the short excitation periods shown here, the density should be

within ≈ 20% of the real value.
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Figure 3.19 : Extraction of plasma density (n) along the x (top) and y (bottom) axes
for a UCNP without magnetic fields using fits to the fluorescence model given by
Eq. 3.7 with a steady-state model of ion state populations given by Eqs. 3.47 (left)
and the rate equation model given by Eqs. 3.38−3.40 (right). The legend indicates
the excitation duration.

3.11 Conclusions

In this chapter, we described LIF of magnetized UCNPs and a model based on rate

equations that describe the transfer of ions between states involved in LIF due to
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laser coupling and spontaneous emission. This model can be fit to LIF spectra to

extract local measurements of ion density, fluid velocity, temperature, and electron-

spin polarization. The code for the spectrum fit model (Eqs. 3.7 and 3.38−3.40) and

the MDQT simulations used to quantify the influence of collisions on LIF is publicly

available [96]. These observations demonstrate that the ions in a UCNP created by

photoionization of magnetically trapped Sr atoms are electron-spin polarized.

This probe was used in the recent experimental demonstration of magnetic con-

finement of a UCNP created at the null of a biconic cusp field [50], as described

in Chap. 4, and will aid further study of the dynamics of magnetized and strongly

coupled UCNPs. In Chap. 5, the time evolution of the ion spin polarization for a

magnetically trapped UCNP is discussed. The ability to characterize the interrelated

dynamics of the ion density and spin polarization should aid in the development of a

magnetohydrodynamic model of magnetized UCNP dynamics.
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Chapter 4

Magnetic Confinement of an Ultracold Neutral

Plasma

The biconic cusp, or quadrupole magnetic field configuration, formed by anti-Helmholtz

current coils [97, 98], can confine neutral plasmas near the central null-field region due

to the magnetic-mirror effect [99]. This confinement scheme has been of long-standing

interest, initially for magnetic-confinement fusion [97, 98, 100, 101, 102], and more

recently for ion sources for applications such as material processing and ion thrusters

[103, 104, 105]. Neutral plasma expanding across biconic cusp field lines experiences

changing length scales and dominant physical processes, and the complex geometry

has similarity to the solar wind interacting with the Earth’s magnetosphere [98, 106].

In this chapter, we demonstrate the magnetic confinement of an ultracold neutral

plasma (UCNP) [1, 3, 35] created at the null point of a biconic cusp field.

UCNPs, created here by photoionizing laser-cooled Sr atoms near the ionization

threshold, have ion temperatures Ti ∼ 1K and tunable electron temperatures of

Te = 1−1000K, which offers a novel regime for study of magnetized and magnetically

confined neutral plasmas. UCNPs also provide the opportunity to study the combined

effects of magnetization and strong coupling on collisional and transport phenomena

because ions are strongly coupled in UCNPs, with the ratio of Coulomb energy to

kinetic energy, known as the Coulomb coupling parameter [107], as high as Γi = 11

[27, 52, 32]. Electrons can also approach the strongly coupled regime, with Γe . 0.4

[108, 109, 110, 111, 112]. There is emerging focus on magnetized and strongly coupled
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plasmas in general [4, 5] and in the ultracold regime [5, 7, 8], driven in large part

by new experimental capabilities in dusty [9, 10, 11] and laser-produced high-energy-

density plasmas [12, 13].

4.1 Principles for Plasma Confinement in a Magnetic Field

The dynamics of a neutral plasma in a non-uniform magnetic field are complex, but

the potential for confinement within a purely magnetic trap is undergirded by two

basic principles. The first principle is the reduction of plasma transport across a

magnetic field, which can become prominent for particles that are magnetized (i.e.,

δ = ρ/L < 1, where ρ =
√
mkBT/eB is the thermal gyroradius and L = n/∇n is

the length scale for density variation). For neutral plasmas that consist of electrons

and relatively heavy ions (mi ≫ me, as is the case here), the electron gyroradius is

typically much smaller than that of the ions unless there is a significant temperature

difference between the species. Figure 4.1 plots the gyroradii for the (a) electrons and

(b) ions as a function of typical magnetic field strengths and temperatures encountered

in the experiment. The electrons are magnetized with δ < 1 everywhere except for

within a small vicinity of the field null and are strongly magnetized with δ ≪ 1 for

B & 20G. On the other hand, the ions are typically unmagnetized and only become

weakly magnetized with δ ≈ 1 for B & 50G.

A pioneering experiment with magnetized UCNPs studied the expansion of the

plasma in a uniform magnetic field for conditions similar to those in Fig. 4.1, where

the fields are strong enough to magnetize the electrons but not the ions [68]. This

study found that the UCNP expansion dynamics were consistent with an anisotropic

ambipolar diffusion model, where the cross-field transport was significantly reduced

and the expansion along the field was unaffected. Assuming classical diffusion [68],
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Figure 4.1 : Thermal gyroradius (ρ) for (a) electrons and (b) ions as a function of
typical magnetic field strengths used in the experiment. The legend indicates the
temperature of each species. The UCNPs described here begin with an initial plasma
size of σ(0) = 1mm. The electrons are strongly magnetized with δ ≪ 1 for B & 20G,
while the ions are only weakly magnetized with δ ≈ 1 for B ≈ 60G.

where transport across the field is mediated by collisions that shift the guiding center

for electron gyromotion, the transverse diffusion rate is D⊥ = ρ2eνei, where νei ∝

n/T
3/2
e is the electron-ion collision rate [113].

The second principle for confinement relies on the magnetic mirror force, which

arises for particle motion along a magnetic field of increasing strength due to the con-

servation of the particle’s magnetic moment µ = mv2⊥/eB, where v⊥ is the particle’s

velocity transverse to the local field. The magnetic moment is an adiabatic invariant

so long as the magnetic field changes slowly on length and time scales relevant for

gyromotion (ρ and ω−1c , respectively, where ωc = eB/m is the gyrofrequency). In this

case, the force per particle is ~F‖ = −l̂µ∂B/∂l pointing in the direction of decreasing

field strength, where l is the distance along the field line.

The magnetic mirroring of particles is conventionally discussed in the single-
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particle picture, where particles with large enough µ and small enough translational

kinetic energy E , described as having a large pitch angle, are trapped between bounce

points. For the plasmas considered here, the electrons would be efficiently trapped in

the magnetic mirror on their own. However, the mirroring of neutral plasmas is more

complicated because the mirror force must also slow the motion of the ions, which

carry the bulk of the inertia. Furthermore, collisions limit the efficacy of magnetic

mirror trapping because they tend to scatter particle velocities into orientations that

lower the magnetic moment and cause particles to diffuse away from the field center.

For the experiments described here, the external magnetic field is stationary in

time and the pressure of the plasma (P = nkBT ) is significantly smaller than the

pressure of the quadrupole field (PB = B2/2µ0), characterized by a beta parameter of

β = P/PB ≪ 1. Thus, the plasma experiences changes in the external field primarily

through bulk motion in spatially varying fields. The terminal hydrodynamic flow

velocity of a UCNP in the absence of magnetic fields is vx,hyd ≈
√

kBTe/mi, so the

condition for adiabatic invariance is

1

B

∂B

∂t
=
vx,hyd
B

∂B

∂x
< ωc. (4.1)

For the largest electron temperature (Te = 160K) and field gradient along the symme-

try axis (∂B/∂x = 150G/cm) considered here, the condition for adiabatic invariance

is well satisfied for the electrons.

The quadrupole magnetic field configuration provides both conditions required for

confinement of a neutral plasma. Figure 4.2 qualitatively illustrates the expansion

dynamics for a plasma localized at the trap center. Due to the reduction of cross-field

transport, the plasma more freely expands into the line cusp along the symmetry

axis (x) of the anti-Helmholtz coils and the ring cusp along the y-z plane. Long

term confinement occurs through the magnetic mirror force because the field gradient
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increases with distance from the plasma center.

Figure 4.2 : Schematic for plasma expansion in a biconic cusp field. Plasma transport
across magnetic field lines is reduced and plasma flow primarily occurs through the
loss gaps along the symmetry axis (x) and the y-z plane. Long time confinement
is achieved through the magnetic mirror effect due to the increasing magnetic field
strength in the loss gaps.

4.2 Expansion of an Exponential Plasma

The creation of a UCNP by photoionization of magnetically trapped atoms in a

quadrupole magnetic field results in an exponentially decaying density distribution of

the form

n = n0 exp

(

−
√

x2 + (y2 + z2)/η2

α

)

, (4.2)

where α characterizes the plasma size along the x axis and ηα characterizes the

plasma size along the y and z axes (see Sec. 2.2). Here, cylindrical symmetry has

been assumed. Nominally, η = 2 because the magnetic field gradient is twice as large

along the symmetry (x) axis, however, η can vary because the spatial distribution
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of the ionizing radiation can influence the distribution that the ions inherit from the

precursor atoms. Prior to discussing the influence of the magnetic fields on the plasma

expansion, it is first instructive to consider the plasma dynamics in the absence of

magnetic fields, which are studied by extinguishing the field over a 280µs period prior

to photoionization.

The expansion of an exponentially decaying plasma, which from now on will be

referred to as an exponential plasma, was studied in detail in [40] and the following

discussion is based on results from this article. The conditions for the expansion

of an exponential plasma were found to be largely hydrodynamic for lower Te and

higher n. For hydrodynamic conditions, the expansion of an exponential plasma can

be parameterized by similar length (σm(0)) and time (τexp) scales as their Gaussian

counterparts because in each case the expansion is driven by gradients in the electron

thermal pressure. Here, σm = (σxσyσz)
1/3 is the geometric mean of the rms plasma

size, as characterized by a Gaussian density distribution of the form

n = n0 exp

(

− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

. (4.3)

Figure 4.3 compares the density (n, top) and velocity (vx,hyd, bottom) transects

along the x axis for a plasma with an initially Gaussian and exponential distribution

as a function of time after photoionization [40]. The velocity distribution of the Gaus-

sian plasma is linear with space (vx,hyd = γ(t)r, where γ(t) = t/[τ 2exp(1 + t2/τ 2exp)])

throughout its evolution, resulting in a self-similar expansion of the density distribu-

tion. The density distribution is well characterized by fits to Eq. 4.3 and the time

evolution of the plasma size was found to be well characterized by

σm(t)
2 = σm(0)

2(1 + t2/τ 2exp). (4.4)

For the exponential plasma, the velocity profile deviates dramatically from the
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Figure 4.3 : Transects along the x axis of the plasma density (top) and velocity (bot-
tom) distributions, for Gaussian and exponential plasmas with initial peak densities
of 1.0×109 cm−3 and 3.5×109 cm−3, respectively, and electron temperature Te = 40K.
Density transects for the Gaussian plasmas are offset for clarity. The time after pho-
toionization is (a) 0.34 ± 0.01µs, (b) 5.7 ± 0.1µs, (c) 14 ± 4µs, (d) 27 ± 3µs. All
density transects are fit to integrals over the LIF-laser-sheet thickness of a Gaussian
density distribution (solid lines). The first time point (a) for the exponential plasma
is also fit to the integral over the LIF-laser-sheet thickness of Eq. 4.2. Reused with
permission from [40]. Copyright 2021 by the American Institute for Physics.

self-similar solutions for the Gaussian plasma due to a steep velocity gradient that

develops near the cusp (|x| . α). Due to the lack of self-similarity, the density distri-

bution is poorly characterized by Eq. 4.2 throughout plasma expansion, so the time

evolution of the plasma size is characterized by fits to Eq. 4.3. The exponential den-

sity distribution immediately after photoionization (Fig. 4.3a) was fit with Eqs. 4.2

and 4.3. The peak density extracted from fits to each model will differ significantly,

but do yield similar values for the initial plasma size (i.e., α ≈ σx). Despite the lack

of self-similarity, the plasma size was found to be well described by Eq. 4.4 with a

modified effective expansion time scale τexp → βτexp, where β = 0.63. For t ≫ βτexp,

the velocity profile approaches vx,hyd = x/t.
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4.3 Results

In this section, we introduce measurements of the plasma density (n) and hydrody-

namic flow velocity along the LIF-laser propagation direction (vx,hyd) from [50] that

demonstrate the magnetic confinement of a UCNP created at the null of a quadrupole

magnetic field. The plasma was probed at an adjustable time after photoionization

using LIF on the 5s 2S1/2 − 5p 2P1/2 transition of Sr+ at 422 nm [33], as described in

Chap. 3. For the data shown here, the LIF laser is linearly polarized along the y axis

and the peak LIF-laser intensity is I0 ≈ 150W/m2. The intensity distribution of the

LIF laser is similar to the characterization given in Sec. 3.1.1, except that the 1/e2

radius of beam along the y axis is ≈ 10mm. Plasma images were collected over an

excitation period of duration τE = 0.5− 2µs and image times indicated in all figures

refer to the midway point of the imaging window.

The results in [50] predate the development of the rate equation model described

in Sec. 3.4, so measurements of n and vx,hyd were extracted through fits of local LIF

spectra to the FGR spectrum model given by Eqs. 3.7 and 3.47. The FGR model does

not account for the optical pumping of ions into states not driven by the LIF laser

and therefore systematically underestimates the plasma density. For the excitation

conditions used here, the errors are relatively small and the use of the FGR model

provides a rather faithful representation of the relative density distribution. No error

is expected for measurements of vx,hyd because optical pumping does not influence

the symmetry of the recorded spectrum when imaging with linearly polarized light.

Fig. 4.4 shows the evolution of n and vx,hyd without and with magnetic fields for

a UCNP with Te(0) = 20 K and σ(0) = 1.3 mm (τexp = 30µs). The data in Fig. 4.4

is obtained by fitting the FGR model to local spectra that were averaged over 20-60

realizations of the plasma (more images were used for longer expansion times). A
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2D Gaussian smoothing filter with RMS width 0.2 mm was used to filter out high-

frequency noise components. Initially (t = 1.5µs), the plasma density and velocity

distributions without (Fig. 4.4(a) and (c)) and with (Fig. 4.4(b) and (d)) the fields are

nearly identical and the plasma has not yet developed significant expansion velocity.

At early times (t < τexp), outward hydrodynamic pressure dominates and the

expansion is relatively unaffected by the magnetic fields. This is reflected by the

nearly identical density distributions at t = 29µs. However, while constant vx,hyd

along lines of constant x is observed without fields as expected for ~vhyd ∝ ~r, velocity

retardation is evident for ions traversing field lines in regions far from plasma center

where the fields are large. For example, along the y = 2x and y = −4.8 mm lines

(indicated in Fig. 4.4(c) and (d), t = 1.5µs), magnetic forces have clearly impeded

the expansion by t = 29µs. This is highlighted in the velocity transects shown in Fig.

4.5. Along the x-axis, where plasma expansion velocity is parallel to the field lines,

vx,hyd is still unaffected by fields.

By t = 85µs the no-fields plasma appears uniform because the plasma size ex-

ceeds the imaged region. Gradients in plasma density that produce outward electron

thermal pressure have diminished, leading to a ballistic plasma expansion for no fields

that persists throughout the rest of the expansion (green line in Fig. 4.5 representing

vx,hyd = x/t).

The with-fields plasma shows considerable effects of the magnetic fields during

this intermediate time. The plasma begins to develop a boundary that follows a field

line (Fig. 4.4(b)). Expansion near the plasma center is relatively unaffected because

of the weak fields, leading to a central plasma depletion and a build up of plasma

density at the boundary. The effects on the plasma velocity, evident at earlier times,

become stronger. Most striking is a reversal of vx,hyd in regions of strong field where



109

Figure 4.4 : Plasma expansion without and with magnetic field (B′ = 150 G/cm) for
Te(0) = 20 K. Rows (a) and (b) show density distributions without and with field,
respectively. The lines in row B (dotted, solid, dashed), correspond to sample field
lines. Time after plasma creation is indicated above each column. The scale for the
density color bar for each time point is nmax = [13.8, 1.7, 0.59, 0.36, 0.25, 0.18, 0.18]×
108 cm−3, in order of increasing time. Rows (c) and (d) show the x-component of the
hydrodynamic velocity, vx,hyd, without and with magnetic fields, respectively. The
scale for the velocity color bar for each time point is vmax = [10, 70, 100, 75, 62, 35, 25]
m/s. The black and blue lines in the first time point of rows c and d correspond to
y = 2x and y = −4.8 mm, respectively. Fig. 3 plots vx,hyd along each of these lines.
Reused with permission from [50]. Copyright 2021 by the American Physical Society.

the expansion velocity is close to perpendicular to field lines, such as near x± 2mm

for y = −4.8mm. The velocity reversal is subtle in Fig. 4.4(d), but is easier to discern

in Fig. 4.5(bottom). The combined density and velocity information indicates that

plasma flow across field lines in these regions has halted, and is now redirected along

field lines back towards x = 0 and increasing |y| for |x| . 2mm.

The initial expansion of the UCNP is driven by gradients in the hydrodynamic

electron thermal pressure [3], which creates a force per ion of

~Fexp(~r, t) = −∇n(~r)
n(~r)

kBTe(t), (4.5)



110

Figure 4.5 : Evolution of the x-component of hydrodynamic velocity for plasma along
the lines y = 2x (top) and y = −4.8 mm (bottom) for data shown in Fig. 4.4 for
plasmas evolving without (open symbols) and with (closed symbols) magnetic fields.
The solid green line represents vx,hyd = x/t, the ion velocity expected for ~vhyd =
γ(t)~r or ballistic expansion at late times (t ≫ τexp). Time since plasma creation is
indicated above each column. Reused with permission from [50]. Copyright 2021 by
the American Physical Society.

where Te(t) is the electron temperature, which decreases during expansion due to

adiabatic cooling. The UCNP expansion may equivalently be described as ambipolar

diffusion, where the electrons and ions diffuse together at the ion acoustic velocity.

Deviations between no-fields and with-fields plasma velocity for ions crossing field

lines are observed as early as t = 29µs (for example, along the velocity transects in

Fig. 4.5). The Lorentz force that the fields exert on charged particles of species s due

to the expansion velocity, ~FL(~r, t) = qs ~vx,hyd(~r, t) × ~B(~r) is negligible compared to

~Fexp at this time, and is not responsible for the velocity reduction.

However, at the boundary of the with-fields plasma, where the effects of the

magnetic field on the expansion first appear, the magnetization of the plasma is



111

significant, as characterized by the magnetization parameter δ = ρ/L, the ratio of

thermal gyroradius ρ =
√
kBTsms/eB to the characteristic lengthscale of the plasma

n(~r)/∇n(~r) ≡ L ∼ 1mm. For B ≈ 50G and Te = 10K, ρe = 10µm, indicating the

electrons are strongly magnetized. For ions with Ti = 0.25K, the magnetization is

modest, with ρi ≈ L. This suggests that the reduction of cross-field expansion re-

sults from pinning of the strongly magnetized electrons to field lines, as discussed in

Sec. 4.1. The transverse diffusion constant is D⊥ = ρ2eνei ≈ 1mm2/ms for ion density

ni = 2× 107 cm−3. Cross-field diffusion several mm from the field null should thus be

slow on the timescale of these experiments, as observed.

At late times (Fig. 4.4, t > 150µs ∼ 5τexp), the expansion for the magnetized

plasma has essentially halted and the plasma has become magnetically trapped, with

a density maximum in the plasma center. Magnetic confinement arises from the

magnetic mirror effect, which results from conservation of the adiabatic invariant

µ ≡ msv
2
⊥/2B for a charged particle moving along a guiding field line, where v⊥ is

the particle’s velocity transverse to the local field. Ion motion for plasma regions

imaged in Fig. 4.4 is not adiabatic because the ion cyclotron period is longer than the

lifetime of the ions in the magnetic trap, but electron motion is adiabatic everywhere

except close to the field null due to their extremely small mass (see Sec. 4.1). Thus,

as expected for biconic cusp fields [97, 98, 102, 114], the likely description of UCNP

trapping is that electrons move along field lines, confined between bounce points, and

ambipolar electric fields transverse to magnetic field lines constrain ion cross-field

transport and provide long-term confinement for the ions.

Plasma with large enough bulk flow momentum can escape through loss gaps

around the field maxima along field lines in the y-z plane and along the x symmetry

axis (Fig. 4.2(a)). This loss is fed by non-adiabatic mixing of electron trajectories
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Figure 4.6 : Relative plasma density in the plasma center versus time scaled by the
hydrodynamic expansion timescale (τexp) without (open symbols) and with (closed
symbols) magnetic field. Solid and dashed lines are exponential fits to Te(0) = 40
K and Te(0) = 160 K with-fields data, respectively, for t > 5τexp. The dotted line
is a 1/t3 fit to all no-fields data with t > 4τexp. Initial peak density and electron
temperature are indicated in the legend. Reused with permission from [50]. Copyright
2021 by the American Physical Society.

near the field null and by collisions. In the loss gaps, ambipolar fields slow electrons,

leading to plasma loss at ion acoustic velocities ∝
√

Te/mi [114]. To characterize

the onset of confinement and rate of plasma loss, Fig. 4.6 shows the time evolution

of the central normalized plasma density nc(t) relative to its initial value. Time is

scaled by the characteristic hydrodynamic timescale. A 1/t3 fit to data with t > 4τexp

demonstrates the ballistic nature of plasma expansion without fields at late times.

In contrast, the with-fields (closed symbol) central density stabilizes at nc(t)/nc(0) =

10−2 at t = 5τexp. Developing a quantitative explanation for this universal behavior

will the subject of future study, but it is generally consistent with the onset of trapping

occurring when the average hydrodynamic expansion force (Eq. 4.5), which decreases
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rapidly with time, matches the typical magnetic mirror force. While the onset time

and level of trapping in scaled units shows no discernible dependence on density, the

trap lifetime decreases for higher Te(0), which is consistent with plasma loss through

loss gaps at the ion acoustic speed. The solid and dashed lines in Fig. 4.6 are expo-

nential fits to Te = 40K and Te = 160K data, respectively, which reveal magnetic

confinement timescales of 500µs (40 K) and 100µs (160 K).

4.4 Scaling of Trapping Dynamics with Te

In Fig. 4.6, it was shown that the trap lifetime decreases with the initial electron

temperature. In this section, we take a closer look at how the magnetized plasma dy-

namics scale with Te(0) for a UCNP under predominantly hydrodynamic conditions.

For a meaningful comparison of how the dynamics scale with the initial electron tem-

perature, it is important that the initial plasma density distribution does not vary

significantly for each case. Although the initial plasma density was not found to play

a significant role in the evolution of the central plasma density, it can in principle

influence the evolution because D⊥ ∝ n. Furthermore, the expansion of the plasma

at early times (t . τexp) is dominated by gradients in the electron thermal pressure

and the plasma size expands according to Eq. 4.4, so it is also important that the

initial plasma sizes are the same.

Fig. 4.7 compares the evolution of plasma density for UCNPs with Te(0) = 40K

(Fig. 4.7a,c) and Te(0) = 160K (Fig. 4.7b,d). The initial density distribution for

each case is characterized by fits to Eq. 4.2, which yield peak density n0 = 4.88 ±

.02 × 109 cm−3, plasma size α = 0.68 ± .01mm, and η = 1.65 ± .01 . Time after

photoionization is indicated above rows (a) and (c) in units of τexp. The LIF data

shown in Fig. 4.7 was recorded with linear LIF-laser polarization using I0 = 70W/m2
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Figure 4.7 : Time evolution of normalized plasma density (ñ = n/n0) in quadrupole
magnetic fields for a UCNP with (a)/(c) Te(0) = 40K and (b)/(d) Te(0) =
160K. For each Te, the initial peak plasma density and geometric mean of the
plasma size are n0 = 4.9 × 109 cm−3 and σm(0) = 0.96mm, respectively. The
color bar maximum in order of increasing time after photoionization is ñ =
[1, .41, .22, .09, .04, .024, .015, .012, .009, .007]. For the images corresponding to row
(b) and t = 1.9 − 3.1τexp, the hard cutoff of plasma density in peripheral regions of
the plasma is an artifact of the analysis because the spectra in those regions were
Doppler- and Zeeman-shifted out of the LIF-laser detuning range used to record the
spectra.

and τE = 0.5− 2µs, with larger exposure period being used for later expansion time.

Local measurements of n were obtained by fitting spectra to Eqs. 3.7 and 3.38−3.40.

The plasma dynamics are nearly identical for each electron temperature before
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the onset of magnetic trapping when time is scaled in terms of τexp (t . 4τexp, rows

(a) and (b)). At early times (t . 1.5τexp), the expansion is dominated by the electron

thermal pressure as expected, and shortly afterward the plasma molds to the field

lines. Note that for t = 1.9− 3.1τexp in row (b), the hard cutoff of the plasma density

distribution near |x| ≈ 4mm is an artifact of the data taking process. In these regions,

the spectra were Doppler- and Zeeman-shifted out of the range of detunings used to

record the LIF data. This issue is not present for any other images shown.

The similarity between the spatial distributions at these times provides further

evidence that the expansion dynamics are driven by ambipolar diffusion, as discussed

in Sec. 4.1. The cross-field diffusion rate scales with the electron temperature as

D⊥ ∝ 1/
√
Te. For time in units of τexp ∝ 1/

√
Te, the ambipolar diffusion rate D̃⊥ =

D⊥τ
−1
exp has no dependence on Te. After the onset of magnetic trapping (t & 4τexp), the

spatial distributions of n are still very similar, but the density decreases more rapidly

for larger electron temperature. At t = 15.5τexp, the density for Te(0) = 160K is

approximately half that for Te(0) = 40K.

4.5 Conclusions

In this chapter, we demonstrated the magnetic confinement of a UCNP in a biconic

cusp magnetic field. The plasma density and velocity-field profiles and estimates

of relevant forces imply that the plasma confinement results from strongly magne-

tized electrons following guiding field lines and ions constrained by ambipolar fields.

Observed trap lifetimes decrease with increasing electron temperature, which is con-

sistent with a dominant loss mechanism of flux through the loss gaps.

The magnetic confinement of UCNPs opens many new research directions. UC-

NPs have long been used for experimental studies of the effects of strong coupling on
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collisional transport processes [6], and these new capabilities may enable exploration

of overlapping regimes of strong coupling and magnetization [4, 5]. With experimen-

tal improvements such as increased magnetic field gradient and field of view for LIF

imaging, it should be possible to characterize scaling of trapping behavior with mag-

netic field and study plasma flow in loss gaps, which will support development of a

quantitative model of plasma dynamics. The combination of magnetic trapping with

recently demonstrated techniques of laser cooling of UCNP ions [32] appears promis-

ing for improving laser cooling efficacy. Because the loss processes for the biconic cusp

trap are localized along loss gaps, laser-induced forces should be particularly effective

for plugging the loss in this geometry, perhaps leading to significantly enhanced trap

lifetimes.
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Chapter 5

Evolution of the Electron-Spin Polarization in a

Magnetized UCNP

In Chapter 4, we discussed the magnetic confinement of a UCNP created at the null of

a biconic cusp field. That discussion focused on the interrelated spatial and temporal

dynamics of the plasma density (n) and the hydrodynamic flow velocity along the

LIF-laser propagation direction (vx,hyd). In this chapter, we extend that discussion

to the electron-spin polarization of the ions (P = p̄2 − p̄1), which characterizes the

difference in the ensemble-averaged fraction of ions that occupy the two magnetic

sublevels of the 2S1/2 electronic ground state of Sr+.

The spin polarization of the ions is derived from the atomic gas from which the

plasma is formed. Following photoionization, the liberated electron carries away

the angular momentum of the ionizing photon and the remaining valence electron

is unperturbed, such that the ions inherit the spin polarization from the precursor

magnetically trapped atoms. The 3P2 atoms in the magnetic trap predominantly

occupy the mj = +2 magnetic sublevel because this sublevel is the most efficiently

trapped (see Sec. 2.2). The valence electrons in this state are both field aligned, so

the resulting ions are highly spin polarized in the field-aligned mj = +1/2 sublevel of

the 2S1/2 ground state.

The ability to measure P is an interesting byproduct of the model introduced in

Chapter 3 to describe LIF of Sr+ ions in the presence of external magnetic fields. In

Section 3.5.2, a constrained fit routine to LIF data recorded separately with LC, linear,
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and RC LIF-laser polarization was introduced to extract measurements of n, vx,hyd, Ti,

and P . The data recorded with LC and RC polarization provides valuable information

for measurements of P where the spectral Zeeman components are unresolved because

the coupling to each ground sublevel is unequal everywhere except for along the y

axis; imaging light with RC polarization will have a stronger σ− drive for x > 0 and

a stronger σ+ drive for x < 0 (and vice versa for LC polarization). Measurements of

n, vx,hyd, and P shown in this chapter were obtained using constrained fits of Eqs. 3.7

and 3.38−3.40 to local spectra recorded with LC, linear, and RC polarization using

peak laser intensity I0 ≈ 150W/m2 and an exposure period of duration τE = 500 ns.

Fit results for P will not be shown for regions adjacent to the y axis for |y| < 3mm

because the spectra are not sensitive to P in these regions.

In the next section, we will discuss the spatial and temporal evolution of P and

how these measurements suggest that the spin-flip rate in the plasma is low. This

behavior is expected because the collision energies and densities are low enough that

state-changing collisions are negligible. Under these conditions, the electron-spin

polarization should be useful for studying plasma flow and diffusion. In Sec. 5.2, we

will discuss how optical pump-probe techniques can be used in magnetized UCNPs to

spin-tag and monitor the evolution of local groups of ions. In Sec. 5.3, we will show

how the time evolution of P is described by a continuity relation when spin-flips can

be neglected.

5.1 Preliminary Measurements

Figure 5.1 shows the evolution of n and P for a UCNP with Te(0) = 20K and σm(0) ≈

1mm (τexp ≈ 23µs). Figures 5.2 and 5.3 show transects of n, P , and vx,hyd along

y = 0 and x = y for the same data as in Fig. 5.1. Immediately after photoionization
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Figure 5.1 : Time evolution of (top) density and (bottom) electron-spin polarization
of the ions during expansion for a UCNP with Te(0) = 20K and σm(0) ≈ 1mm. Time
after plasma creation is indicated above each column. The scale for the density color
bar for each time point is nmax = [52, 19, 5.8, 2.4, 0.8, 0.48]× 108 cm−3.

(t = 0.5µs), the plasma is highly spin polarized with P & 0.75 for r > σm(0). The

spin polarization decreases towards the plasma center for r . σm(0), but cannot be

resolved at the field null. The regions closest to the field null where P can be resolved

(|x| = 0.25mm, y = 0) indicate P ≈ 0.45 immediately after photoionization. We get

a better idea of the initial spin polarization at the field null after a short period of

expansion because central ions have expanded into regions where P can be resolved.

By t = 26µs, the spin polarization has reached P ≈ 0.15 near the field null and

remains at this value throughout the duration of plasma expansion.

An imperfect polarization is not surprising because atoms in themj = +1 sublevel

of the 3P2 state are also magnetically trappable, albeit less efficiently than ions in

the mj = +2 sublevel, and the spin alignment of the electron left behind is not

uniquely determined. Furthermore, non-adiabatic motion of atoms through the field

null throughout the trapping of precursor atoms will lead to a constant transfer of

the efficiently trapped mj = +2 atoms to other sublevels. Atoms that flip to states



120

-5 0 5
0

50
n
 (

1
0

8
c
m

-3
)

0.5 s

-5 0 5
0

10

20
13 s

-5 0 5
0

5

26 s

-5 0 5
0

1

52 s

-5 0 5
0

0.5

104 s

-5 0 5
0

0.2

0.4

176 s

-5 0 5
0

0.5

1

P

-5 0 5
0

0.5

1

-5 0 5
0

0.5

1

-5 0 5
0

0.5

1

-5 0 5
0

0.5

1

-5 0 5
0

0.5

1

-5 0 5

x (mm)

-100

0

100

v x

gh

y

i
jk
ln
o

pq 0 q
x (mm)

prtt

0

rtt

pq 0 q
x (mm)

prtt

0

rtt

pq 0 q
x (mm)

prtt

0

rtt

pq 0 q
x (mm)

prtt

0

rtt

pq 0 q
x (mm)

prtt

0

rtt

Figure 5.2 : Evolution of n, vx,hyd, and P along the symmetry (x) axis for the same
data set shown in Fig. 5.1.
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with mj < 0 are anti-trapped and will be quickly expelled from the trap, but a

significant portion of atoms can accumulate in the mj = 0 state because this state

does not interact with the fields. The ionization of these atoms will on average result

in P = 0.

At early times during plasma expansion when the influence of the magnetic fields

is small (t . 26µs), the hydrodynamic flow velocity generally increases with distance

from plasma center and the length scale for change in n and P evolve at similar rates.

At later times when the magnetic fields have slowed the expansion across field lines

(t & 52µs), the evolution of n and P in the loss gaps (i.e., the x axis and the y-z

plane) differ significantly from the cross-field regions (i.e., |x| ≈ |y|). Along the x

axis (Fig. 5.2), the weakly polarized ions that originate from near the field null flow

relatively freely and the spin polarization decreases until the plasma is magnetically

trapped at t = 104µs. In contrast, cross-field diffusion is significantly reduced along

x = y (Fig. 5.3) and the distribution for n and P do not change significantly after

t = 52µs.

The stabilization of P for t ≥ 104µs suggests that the internal states of individual

ions are conserved throughout the plasma evolution and the polarization within a

local volume element only changes due to the flow of particles into and out of the

element. Because P cannot be measured at the field null, we cannot definitively

determine whether the polarization changes due to non-adiabatic motion through the

field null. However, the data in Figs. 5.1−5.3 suggest that this rate is low because the

polarization in the regions adjacent to the field null (|x| ≈ 0.25mm) do not change

significantly for t ≥ 26µs.

Similar observations were made for the evolution of a UCNP with Te(0) = 40K.

Figures 5.4 and 5.5 compare the evolution of 2D distributions and 1D transects along
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the x axis, respectively, for n/n0 and P for the 40K plasma with the 20K plasma

shown in Figs. 5.1−5.3. The evolution of the normalized density and spin polar-

ization profiles are very similar throughout the duration of plasma expansion and

confinement. After the onset of magnetic trapping (t ≈ 5τexp), the density for the

40K plasma decays more quickly than the 20K plasma, which is consistent with de-

creasing trap lifetime for increasing Te observed in Sec. 4.3. The spin polarization for

the 40K plasma is higher than the 20K plasma initially, likely due to differences in

the spin polarization of the precursor atoms, and throughout the duration of plasma

expansion. For each data set, the spin polarization in the regions adjacent to the

field null decrease until they stabilize to P ≈ 0.15 (20K) and P ≈ 0.25 (40K) at

t ≈ 1.3τexp. The stabilization of the distributions for P provides further evidence

that changes to individual ion spin states are negligible on these timescales.

5.2 Spin-Tagging Ions in a Magnetized UCNP

The time evolution of P tells us a great deal about plasma flow because UCNPs cre-

ated at the null of a biconic cusp field are initialized with decreasing spin polarization

towards the plasma center, where the density is highest, and the polarization will

decrease anywhere the dense central ions flow to. For example, the spin polarization

in cross-field regions remains high throughout plasma expansion, which indicates that

ions near the field null do not penetrate far into these regions. Thus, the spin polar-

ization essentially allows us to monitor which ions go where when there is a gradient

in P .

In this section, we consider how the distribution of P can be sculpted through

spatially dependent optical pumping in a way that facilitates the monitoring of the

evolution of a small population of spin-tagged ions. The concept of spin-tagging (i.e.,
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using laser light to manipulate the internal states of the ions) is not new in the field

of UCNPs. For example, optical pump-probe techniques have been used previously

to measure Coulomb collision rates [34] and self-diffusion [62] in strongly coupled

UCNPs. In these experiments, counter-propagating cross-polarized lasers are used to

establish non-equilibrium velocity distributions for ions in the 2S1/2 electronic ground

state of Sr+ and spin-selective LIF measurements allow for the monitoring of these

distributions as they relax towards equilibrium (Fig. 1.5).

Cross-polarized lasers were required in previous experiments to establish a local

velocity dependence to optical pumping, so as to skew local velocity distributions for

each magnetic sublevel of the ground state. For the spin-tagging techniques proposed

here, one laser is sufficient for establishing a gradient in the ensemble-averaged inter-

nal states because the velocity dependence is integrated out. We have already seen

in Sec. 3.5.3 that optical pumping occurs to states dark to the driving laser while

illuminating ions in a magnetic field with a fixed laser detuning. Optical pumping is

most effective when the laser coupling to each ground state differs, which can occur

any time the transitions are resolved or when the coupling to the σ transitions is un-

equal. These conditions are most broadly satisfied by circularly polarized radiation

because the couplings to the σ transitions differ everywhere except for along the y

axis and the σ transitions are easier to resolve than the π transitions due to their

larger Zeeman splitting.

A collimated, circularly polarized laser that propagates along the x axis can be

used to optically pump millimeter-sized holes into the spatial distribution of P for a

UCNP in a quadrupole magnetic field. The collisional rate equation (REK) model

for ion population transfer (Eqs. 3.38−3.41) can simulate the time evolution of P

for a magnetized UCNP under the influence of a driving laser. Figures 5.6 and 5.7
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demonstrate spin-tagging of a UCNP with Te(0) = 20K after t = 26µs and t = 104µs,

respectively, following an excitation of duration τE = 1µs with a RC-polarized laser.

Measurements of n, vx,hyd, and P prior to spin-tagging are shown in panels (a)-(c) and

panel (d) shows the REK simulations of the spin polarization following spin-tagging,

P (τE). In each grid cell, measurements of n, vx,hyd, Ti, and P are input to the REK

model to simulate spin-tagging of the measured plasma conditions in each region for

a driving laser that propagates along the x axis and is centered at y = 1.5mm with

a peak effective laser intensity Ī = 250W/m2 and 1/e2 radius of 0.75mm along the

y axis. The laser polarization and propagation direction were chosen to ensure a

stronger σ− drive for x > 0, such that the ions, which are initially polarized in the

mj = +1/2 ground state, are optically pumped into the mj = −1/2 ground state.

Similar results can also be achieved with LC-polarized light propagating along the

−x direction.

The location and dimensions of the optically pumped region can be controlled with

the properties of the driving laser. The hole location along the y axis is controlled

through laser alignment while the location along the x axis is dependent on the

laser detuning because of the Doppler shift along the laser propagation axis. For the

simulations in Figs. 5.6 and 5.7, the detuning has been chosen such that the ions were

optically pumped in approximately the same spatial region (x ≈ 1.5mm). The size of

the region along the y axis is primarily shaped by the 1/e2 radius of the driving laser,

which can easily be controlled with optical lenses or through truncation of the laser

by a slit, as is done to control the thickness of the LIF imaging sheet. The size along

the x axis is determined from the combined Zeeman and Doppler shifts of the driving

laser. The 150G/cm field gradient along the x axis results in ≈ 28MHz/mm Zeeman

shifts of the σ transitions, which should lead to spatial selectivity on the order of a
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Figure 5.6 : Spin-tagging a UCNP with Te(0) = 20K after 26µs of evolution in a
biconic cusp field. Panels (a)-(c) show measurements of n, vx,hyd, and P prior to spin-
tagging (τ = 0). Panel (d) shows P (τE), the spin polarization after an excitation of
duration τE = 1µs with a RC-polarized laser that propagates along the x axis. The
peak laser intensity I0 = 250W/m2 is centered at y = 1.5mm and the beam has a
1/e2 radius of 0.75mm along the y axis. Density and velocity are expressed in units
of 108 cm−3 and m/s, respectively.

few millimeters, depending on the Doppler width of the velocity distribution.

Gradients in the hydrodynamic flow velocity along the laser propagation (x) axis

will lead to increased spatial resolution for the pumped region. Prior to the onset

of magnetic trapping (t = 26µs; Fig. 5.6), the velocity gradient along the x axis

is the largest and the pumped region is approximately circular with a 1/e2 radius

of 0.75mm. At later times when the velocity gradient is reduced (t = 104µs; Fig.

5.7), the size of the pumped region along the x axis has approximately doubled and

remains the same along the y axis.
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Figure 5.7 : Spin-tagging a UCNP with Te(0) = 20K after 104µs of evolution in
a biconic cusp field. Panels (a)-(c) show measurements of n, vx,hyd, and P prior to
spin-tagging (τ = 0). Panel (d) shows P (τE), the spin polarization after an excitation
of duration τE = 1µs with a RC-polarized laser that propagates along the x axis. The
peak laser intensity I0 = 250W/m2 is centered at y = 1.5mm and the beam has a
1/e2 radius of 0.75mm along the y axis. Density and velocity are expressed in units
of 108 cm−3 and m/s, respectively.

This technique should be useful for studies of plasma flow and diffusion because a

small region of ions can be spin-tagged essentially anywhere in the plasma throughout

its lifetime. It should be possible to reduce the size of the spin-tagged region along

the y axis by decreasing the 1/e2 radius of the driving laser and along the x axis

either by increasing the magnetic field gradient or by creating a plasma with higher

Te, which results in larger velocity gradients.

One potential limitation for this technique could be ion motion along the z axis,

which could limit the time that spin-tagged ions will remain within the x-y imaging
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plane defined by the thickness of the LIF imaging sheet. In the absence of external

magnetic fields, components of velocity along the z axis are negligible in the x-y plane.

However, the trajectory of ions moving across magnetic field lines can be curved out

of the plane either due to the influence of the Lorentz force on ion bulk-flow motion,

thermal gyromotion, or drift velocities that arise due to gradients in the magnetic

field. However, all of these effects are expected to be small on timescales of interest

here because the ions are weakly magnetized.

The curvature of bulk-flow motion across magnetic field lines due to the Lorentz

force occurs on times scales set by the inverse of the ion gyrofrequency (ωci = eB/mi).

For the largest magnetic fields used here (B ≈ 75G), the period of ion gyromotion is

tc = 2π/ωc ≈ 750µs. However, the ions do not have significant velocity components

across the magnetic field lines in regions of large magnetic field. For ions closer to the

field null, which may have significant expansion velocity across the field, the time and

length scale for bulk-flow gyromotion will be much longer due to the weaker fields

and, thus, this should not be a concern. Likewise, similar arguments can be made for

the neglect of thermal gyromotion.

Drift velocities can arise in magnetized plasmas in the presence of an external

force (~F ) that is perpendicular to the local magnetic field. The guiding center drift

velocity is given generally by

vgc =
~F × ~B

eB2
. (5.1)

In Sec. 4.1, we discussed how magnetic field gradients result in a force of the form

~F = −µ∇ ~B, where µ is the magnetic moment for thermal ion motion. Thus, when

~B ⊥ ∇ ~B and the local field lies in the x-y plane, the drift velocity will have a

component in the z direction. Due to the dependence on the ion’s magnetic moment,

it is difficult to provide an estimate of the ion drift velocity because ion motion is not



129

adiabatic. By the same token, the adiabatic moment is expected to be small and,

therefore, the drift velocity should also be small.

5.3 Modeling the Evolution of P

The LIF data presented in this chapter demonstrates that the electron-spin polariza-

tion of the ions is long-lived, which suggests that spin-flip mechanisms in the plasma,

such as those induced by collisions or non-adiabatic motion through the field null, are

slow compared to the ∼ 100µs timescales for these experiments. The polarization

should not influence the bulk flow motion of the ions in the magnetic field because

spin-dependent interactions are negligible, so the evolution of P should be well de-

scribed by a magnetohydrodynamic (MHD) treatment where the density of ions in

state |k〉, nk = np̄k, evolves according to the following continuity relation

∂nk

∂t
+∇ · (nk~vk) = 0, (5.2)

where vk and p̄k are the hydrodynamic flow velocity and ensemble-averaged fraction of

ions in state |k〉, respectively (quantum state indices correspond to those in Fig. 3.1).

In the absence of driving fields, the ions occupy one of the two magnetic sublevels

in the 2S1/2 electronic ground state, such that p̄1 + p̄2 = 1 and the total density is

n = n1 + n2.

The time evolution of P is embedded within the continuity relation given by

Eq. 5.2. The spin-independence of the evolution requires ~v1 = ~v2 = ~v. As a result,

the spin polarization density P̃ = nP can be shown to obey an analogous continuity

relation by subtracting Eq. 5.2 evaluated with k = 1 from that evaluated with k = 2

to obtain

∂P̃

∂t
+∇ · (P̃~v) = 0. (5.3)
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Eq. 5.3 is best suited for integration in numerical models because it is expressed in

conservative form. However, the dependence on n, which is implicit within P̃ , can be

removed from Eq. 5.3 if desired by expanding the derivatives with the product rule

and using the continuity relation for n to obtain

∂P

∂t
+∇ · (P~v) = P (∇ · ~v). (5.4)

The term on the RHS of Eq. 5.4 describes how local gradients and time variation of

n influence the evolution of P .

5.4 Conclusions

In this chapter, we presented preliminary measurements of the time evolution of the

electron-spin polarization of ions in a UCNP that is created at the null of a biconic

cusp field. These observations demonstrate that the spin polarization is long-lived

because the spatial distribution for P stabilizes after the onset of plasma confinement,

which suggests that collision-induced spin-flips are low. While these measurements

also suggest that spin-flips due to non-adiabatic motion through the field are slow on

the timescale of these experiments, the inability to measure the polarization within

a small vicinity of the field null makes it difficult to conclusively rule them out.

Nevertheless, the length scale for gradients in n and P are sufficiently large at the

onset of magnetic confinement that P is well determined for the vast majority of the

ions in the plasma. Subsequent evolution of the plasma should not be significantly

affected by the ions remaining in the regions where P cannot be measured because the

hydrodynamic flow velocity generally scales with distance from plasma center and,

therefore, the small number of ions at the center largely remain stationary.

In future work, we plan to develop a model for the dynamics of a UCNP within a



131

biconic cusp field. In the previous section, we showed how the electron-spin polariza-

tion density of the ions follows a continuity relation. This should make it relatively

straightforward to incorporate the dynamics of P into single- or two-fluid magneto-

hydrodynamic model of the plasma. The ability to spin-tag and monitor the flow of

local groups of ions should prove useful in the development of such a model.
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Chapter 6

Conclusions

In this thesis, we developed a model to describe LIF of UCNPs in an external magnetic

field and used LIF imaging to demonstrated the magnetic confinement of a UCNP

that is created at the null of a biconic cusp field. UCNPs offer a novel regime for

the study of magnetized neutral plasmas due to their dilute densities and ultracold

temperatures and are uniquely suited for the study of strongly coupled plasmas across

the full regime of magnetization. The ability to resolve the density, velocity, and

internal-state distributions of the ions in magnetic fields builds a foundation for future

studies of the combined effects of magnetization and strong coupling on collisional

and transport phenomena in magnetized and magnetically confined neutral plasmas.

Magnetic confinement within a biconic cusp field should compliment the recent

application of laser cooling to the ions in UCNPs [32] and help extend the range of

ion Coulomb coupling that can be realized in the laboratory. The ion coupling has

traditionally been limited to Γi = 2 − 5, however, laser cooling/heating extended

this range to Γi = 0.1 − 11 in the center of the plasma where ion velocities remain

low. The primary limitation to the cooling efficacy in these experiments was the

rapid plasma expansion, which limits the amount of time available for laser cooling

and Doppler shifts ions in peripheral regions of the plasma out of resonance with the

cooling lasers. The introduction of magnetic fields promises to alleviate both of these

issues through magnetic confinement, which greatly enhances the plasma lifetime, and

spatially varying Zeeman shifts, which should extend the effective region for cooling
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to a larger portion of the cloud. In kind, optical forces should also enhance magnetic

confinement times by reducing the loss of ions through the field cusps.

The magnetic confinement times observed here could be improved in future work

by trapping the precursor atoms in a weaker magnetic field than is used to trap the

plasma. Currently, we do not possess the capability of ramping the magnetic fields on

fast enough timescales that would allow the field strength to be changed appreciably

during the ∼ 100µs time period between atom trapping and photoionization. As a

result, the initial plasma size is proportional to the field gradient used to trap both

the atoms and the plasma. However, the ability to ramp the fields on and off quickly

would both allow for atom trapping to occur at lower field strengths than used here

while also allowing for higher field strengths to be used to confine the plasma. With

these improvements and increased field of view for LIF imaging, it should be possible

to characterize the scaling of trapping behavior with the initial plasma size, electron

temperature, and magnetic field strength and study plasma flow in the loss gaps.

The dynamics of a UCNP in a biconic cusp field are complex and in future work

we plan to develop a magnetohydrodynamic model that should elucidate the physical

mechanisms that undergird the plasma behavior. Comparison with experimental

data will be important for determining what level of sophistication will be required

to accurately model the influence of the magnetic fields on plasma transport. The

electrons in UCNPs are strongly magnetized in the sense that the time and length

scales for gyromotion are smaller than the hydrodynamic expansion time scale and

length scale for change in plasma density, respectively, while the ions are weakly

magnetized. In this case, a two-fluid model may be required to describe how the

magnetic fields influence the transport of ions indirectly through ambipolar fields

that develop between the ions and strongly magnetized electrons.
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Measurements of the electron-spin polarization should aid in the development of

such a model because it allows for the tracking of which ions go where. For example,

the polarization is lower near the field null for the UCNPs described here, so as the

plasma expands we gain information about where the ions are flowing based on where

the spin polarization decreases as the plasma expands. The spin-tagging techniques

discussed in Sec. 5.2 should enhance our ability to monitor the flow of a small subset

of ions in the plasma.

The initial distribution for the spin polarization can be influenced by the distri-

bution of the precursor atoms or the photoionization process. In either case, the

initial spin polarization is not as important as the conservation of it after plasma

creation. The data presented here confirms that the collisional spin-flip rate is low

by demonstrating that the polarization stabilizes in cross-field regions for long time

periods. The data also suggests that spin flips due to non-adiabatic motion through

the field null are low on the timescales of these experiments, however, this cannot be

conclusively ruled out because the spin polarization cannot be measured at the field

null. In future experiments, it could be useful to obtain measurements of P with sim-

ilar initial density distributions as described here and with higher Te(0). The faster

expansion timescale will lead to less time for ions to occupy the field null and could

help determine the rate that spin flips occur due to non-adiabatic motion through

the field null.
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