
RICE UNIVERSITY

Universality in the Equilibration of Quenched

Yukawa One Component Plasmas

by

Thomas Langin

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Thomas C. Killian, Chair
Professor of Physics & Astronomy

F. Barry Dunning
Sam and Helen Worden Professor of
Physics & Astronomy

C.H. Kiang
Associate Professor of Physics &
Astronomy and Bioengineering

Houston, Texas

April, 2015



ABSTRACT

Universality in the Equilibration of Quenched Yukawa One Component Plasmas

by

Thomas Langin

A Yukawa one-component plasma (OCP) is an idealized model in which particles

interact through a 1/r potential with an additional exponential falloff with length

scale κ−1 expressed in units of the average interparticle spacing. This model is used to

approximately describe a wide range of physical systems, especially strongly coupled

plasmas; i.e., those which have Γ ≥ 1, where Γ is the ratio of the Coulomb interaction

energy between neighboring particles to the kinetic energy per particle. All dynamics

and physical properties in Yukawa OCPs are expected to be universal in κ when

expressed in appropriate scaled units.

We study a particularly clean realization of the Yukawa OCP, an ultracold neu-

tral plasma (UNP) created by photoionization of an ultracold atomic gas. The rapid

quench to a UNP results in an equilibration process known as Disorder Induced

Heating (DIH). Even after DIH the plasma is strongly coupled, with Γ ∼ 3. During

DIH, oscillations in Γ−1 (i.e. scaled Kinetic Energy) occurring at twice the plasma

frequency, ωpi, are observed, possibly indicating coupling to collective modes. Uni-

versality is demonstrated by showing that Γ−1(t) curves taken at similar κ collapse

onto the same curve when plotted vs. ωpit. We also compare our results to molecular

dynamics (MD) simulations. The utility of the universality is shown by using the MD

simulations to determine the density from experimental DIH measurements.



iii

Acknowledgements

I would first like to thank my advisor, Tom Killian, for his guidance both in the

writing of, and in the research within, this thesis. Without his input, the quality of

both would have suffered dramatically. In particular, his ability to edit a confusing

mess of an explanation into a concise one which clearly conveys the point to the reader

is a gift I’ll need to acquire myself so I can use it when I graduate and no longer have

him to edit my drafts. I would also like to thank my other committee members, Barry

Dunning and Ching-Hwa Kiang, for taking the time to review this thesis.

My partners in the plasma lab, Patrick McQuillen (PhD 2015) and Trevor Strick-

ler, were also instrumental in training me to accomplish the tasks set forth in this

thesis. The experimental apparatus and data analysis codes are both very formidable

at first glance, and I would never have understood them without their guidance. Con-

versations with members of the other two experiments in the Killian Lab, “neutral”

(Jim Aman and Brian DeSalvo (PhD 2015)) and “rydberg” (Francisco Carmago,

Roger Ding, and Joe Whalen) were also essential, as they provided guidance and

occasionally a necessary diversion from my own struggles.

My father, Thomas, and mother, Margaret, along with the rest of my family, have

always supported me throughout my life’s journeys and for that I thank them. I

would not be here at Rice today were it not for them. My girlfriend, Rachel, also

aided in this work by providing essential love and support. Love you.

Lastly, I would like to thank the funding sources for the plasma experiment: the

United States National Science Foundation, the Department of Energy, and the Air

Force Office of Scientific Research. My stipend is provided by the National Defense

Science and Engineering Graduate Fellowship (NDSEG).



Contents

Abstract ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Illustrations vi

1 Introduction 1

1.1 Motivation: Strongly Coupled Plasmas . . . . . . . . . . . . . . . . . 1

1.2 The Yukawa OCP Model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Ultracold Neutral Plasmas: A clean realization of the Yukawa

OCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Quench Dynamics in the Yukawa OCP: Disorder Induced Heating . . 5

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Ultracold Neutral Plasmas 12

2.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Cooling, Trapping, and Photoionizing Atoms . . . . . . . . . . 13

2.1.2 Plasma Diagnostics: Temperature and Density Measurement . 16

3 Disorder Induced Heating 25

3.1 Previous Studies of DIH . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Effect of non-thermalization on comparisons between MD

Simulations and Experiments . . . . . . . . . . . . . . . . . . 31

3.3 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Effect of Density Averaging . . . . . . . . . . . . . . . . . . . 40



v

3.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Using Universality as a precision probe of UNP Density 44

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 51

Appendices 53

A Derivation of g(r) and related quantities 54



Illustrations

1.1 Plasma n− T diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Radial distribution function g(r) . . . . . . . . . . . . . . . . . . . . . 7

2.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Sr Level Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Sr+ Level diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 LIF Image acquisition diagram . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Regional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 2004 Rice DIH study with Kinetic Energy Oscillations . . . . . . . . 26

3.2 MD simulation results from 2011 BYU DIH study . . . . . . . . . . . 28

3.3 Γ−1(κ) from 2013 BYU DIH study . . . . . . . . . . . . . . . . . . . 29

3.4 Library of DIH curves from MD simulations . . . . . . . . . . . . . . 30

3.5 Non-thermalized DIH distributions from MD simulations . . . . . . . 32

3.6 MD data convolution procedure . . . . . . . . . . . . . . . . . . . . . 33

3.7 Slow approach to equilibrium temperature in MD Simulations . . . . 34

3.8 Experimental verification of universality for κ = 0.23 over two orders

of magnitude in density . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Comparison between DIH in experiment and MD simulation for

various n at constant Te . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Comparison between DIH in experiment and MD simulation for

various Te at constant n . . . . . . . . . . . . . . . . . . . . . . . . . 37



vii

3.11 ωDIH(κ)/ωpi from MD simulations . . . . . . . . . . . . . . . . . . . . 38

3.12 Experimentally measured KEO amplitude and decay vs κ . . . . . . . 39

3.13 Effect of Density averaging on DIH Curves . . . . . . . . . . . . . . . 41

3.14 Experimentally measured KEO amplitude and decay vs κ including

density fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Examples of using DIH to fit for n . . . . . . . . . . . . . . . . . . . 47

4.2 nfit/ncamera vs κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



1

Chapter 1

Introduction

1.1 Motivation: Strongly Coupled Plasmas

Throughout the last century, many different tools have been developed for studying

systems of charged particles, otherwise known as plasmas. The simplest, and least

computationally intensive, tool is magnetohydrodynamics (MHD), in which the mi-

croscopic effects of collisions between particles are neglected and only bulk properties

are considered (i.e. a fluid treatment). This is valid in the regime where the collisional

effects are dominated by many weak “small angle” scattering events which occur on

a timescale far shorter than the system timescale (tsys = L/vT , where L is the size

of the system and vT is the thermal velocity). In this case, collisions serve only to

isotropize and thermalize the plasma.

One necessary, but not sufficient, feature a plasma must have to be well described

by MHD is:

Λ =
4π

3
nλ3D =

4π

3
n

(
kBTε0
ne2

)3/2

=
1

(3Γ)3/2
� 1 (1.1)

where n is the density, λD =
√
kBTε0/(ne2) is the Debye screening length, beyond

which collisions are ineffective, and:

Γ =

(
3

4π

)2/3
n1/3e2

3kBTε0
=
e2/(4πε0a)

kBT
(1.2)

where a =
(

3
4πn

)1/3
is the average interparticle spacing. In other words, for MHD to
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work well there must be many particles within one “Debye sphere” (Λ� 1) or, equiv-

alently, the ratio of the potential energy between neighboring particles (e2/(4πε0a))

to the kinetic energy (kBT ) must be very small (Γ� 1).

If close collisions have a small, but non negligible effect (i.e. if there are a mod-

erately large number of particles in a Debye sphere) , they can be accounted for

using “kinetic” models, where the effects of particle interactions on the phase-space

distribution function f(x, v, t) are modeled through collision rates. Theories yielding

analytic expressions for these rates (e.g. the Landau-Spitzer theory of collisions) treat

the effect of the interactions as a small perturbation.

However, in so-called “strongly coupled plasmas” (SCPs), for which Γ & 1, we

must take a step further and treat the cloud as N individual particles with dynamics

determined by some interaction potential. These plasmas are no theoretical abstrac-

tion; examples include astrophysical objects such as the cores of gas giant planets

and white dwarf stars. Laboratory plasmas such as the plasmas produced in inertial

confinement fusion (ICF) experiments and, as we’ll explain in Chapter 2, plasmas cre-

ated from photoionization of a laser-cooled gas (ultracold neutral plasmas, or UNPs)

can also be in this regime, as illustrated in Fig. 1.1.

1.2 The Yukawa OCP Model

In order to make any progress in solving the equations of motion for the N particles

within the plasma, we need to determine a model for their interaction potential.

In the One Component Plasma (OCP) model, the dynamics of one of the species

(typically the electrons), are neglected, hence the moniker “One Component Plasma”.

That species is instead treated as a neutralizing background which rapidly adjusts

to screen the interactions between the other, slower, component (typically ions). In
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Figure 1.1 : Various plasmas plotted on n− T phase diagram. The red line denotes
Γ = 1. Adapted from [15]

such a plasma, it can be shown that the ions interact through:

V (~ri, ~rj) =
(Ze)2

4πε0a

a

rij
exp

[
− a

λD

rij
a

]
=

(Ze)2

4πε0a

exp[−κr̃ij]
r̃ij

(1.3)

where rij = |~ri − ~rj| is the distance between particles i and j, Ze is the ion charge,

λD =
√

kBTeε0
ne2

, Te is the electron temperature, n = ni = ne is the plasma density,

r̃ij = rij/a is the distance scaled by the interparticle spacing, and κ = −a/λD is

called the “screening parameter”.

This is a specific case of the Yukawa interaction:
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V (~ri, ~rj) =
k exp[−rij/λ]

rij
(1.4)

where k describes the strength of the interaction and λ describes the length scale

of an additional exponential falloff in the strength of the interaction. This potential

was developed by Hideki Yukawa in 1935 to describe interactions mediated by the

exchange of massive particles (e.g. the strong force) [21], but, as we showed above, it

also applies to screened Coulomb interactions in a OCP. Plasmas which are modeled

accurately by Eq. 1.3 are thus known as Yukawa OCPs.

1.2.1 Ultracold Neutral Plasmas: A clean realization of the Yukawa OCP

UNPs are very accurately described by the Yukawa model. They will be discussed

in detail in Chapter 2; here we just provide a brief overview. They contain just

two components: electrons and singly-ionized atoms (in our experiment, Sr+) or

molecules. Electron temperatures range from 1-1000 K, leading to thermal velocities

vTe ∼ 1000−10000 m/s and Γe ∼ 0.005−0.2. On the other hand, the ion temperatures

are on the order of 1 K, leading to thermal velocities vT i ∼ 10 m/s and Γ ∼ 1. Since

we are only interested in the ion dynamics, and vTe � vT i, we can effectively ignore

the electron motion and treat the electrons simply as a neutralizing background which

moves rapidly enough to screen the ion interactions. Of course, this is what is required

for the Yukawa OCP model to be accurate.

The Yukawa model can also be applied to the other strongly coupled plasmas

we’ve discussed, such as the cores of gas giant planets and white dwarf stars and ICF

plasmas, although for these systems one must occasionally take into account electron

degeneracy, as often times kBTe ≤ Ef , where Ef is the Fermi energy. Also, while

all ions in UNPs have charge Z = 1, ions in these other systems can be in various
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multiply ionized states, further complicating (but not invalidating!) the application

of the Yukawa model. For these reasons (among others, such as slower timescales and

the diagnostic tools available for UNPs, which are discussed in Chapter 2), UNPs are

an ideal system for studying the physics of a Yukawa OCP.

1.3 Quench Dynamics in the Yukawa OCP: Disorder Induced

Heating

In this thesis, we study the equilibration of a UNP immediately after photoionization.

We do this by measuring the average kinetic energy of the ion component of the

plasma at different stages during the equilibration process. This is, effectively, a

study of equilibration in a strongly coupled Yukawa OCP after a rapid quench in

κ from κ = ∞ (i.e., the non-interacting ultracold gas) to κ = κf (n, Te), where n

and Te are experimentally controllable parameters. We discuss the results of our

experimental study in Chapter 3. However, as the theory pertaining to the quench

dynamics is already somewhat developed, we will introduce it here.

The quenching process introduces energy to the system, all of which is initially

stored as interaction energy between the repulsive ions. As a result of this change

in the potential landscape, close groupings of ions begin to move away from each

other. This introduces spatial correlations into the plasma; such spatial correlations

are a hallmark of strongly coupled Yukawa OCPs, and of strongly coupled systems

(e.g. liquids and solids) in general [13]. The development of the spatial correlations

reduces the energy stored in the interactions; by conservation of energy this causes

the thermal energy of the plasma to increase. For this reason, this process is often

referred to as “Disorder Induced Heating” (DIH), as it stems from the development
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of spatial order in an initially disordered plasma.

The temperature of the plasma after heating can be computed simply by determin-

ing the difference in the interaction energy before and after the correlations develop;

by conservation of energy 3
2
NkBTDIH = Uint(t = 0)−Uint(t→∞), assuming that the

initial temperature of the gas can be neglected (Tgas ∼ 10 mK, which is more than an

order of magnitude below typical TDIH values, as we shall soon see). The amount of

interaction energy per particle in a spatially correlated system can be determined by

(see Appendix A for a full derivation):

U

N
=

3

2

∫ ∞
0

g(r̃)V (r̃)r̃2dr̃ (1.5)

where V (r̃) is the interaction energy (Eq. 1.3 for a Yukawa OCP) and g(r̃), the radial

distribution function, is a weighting factor corresponding to the likelihood of different

ion pair distances occurring within the plasma.

The radial distribution function simply reflects how local density near any particle

(taken to be at the origin) is modified by the correlations: nlocal(r) = g(r)n. For

example, in a non-interacting system g(r) = 1, meaning that having a particle at

the origin doesn’t effect the locations of any other particle. In contrast, for a lattice

produced by a very strongly interacting system, we’d have something like g(r) ∝

δ(r− r1)δ(r− r2)... where r1 is the nearest neighbor separation, r2 is the next nearest

neighbor separation, etc.

For systems in between those two limits, g(r) is more difficult to calculate. How-

ever, it can be shown that for plasmas the form of g(r) depends solely on Γ and κ

(see Appendix A for the proof), and I’ll henceforth refer to it as g(r,Γ, κ). The equi-

librium form of g(r,Γ, κ) is known through molecular dynamics (MD) simulations [7];

Figure 1.2 shows g(r,Γ, 0) for several values of Γ. The clear features are the depletion
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of close pairs occurring even at moderate (Γ ∼ 3) coupling and the further develop-

ment of spatial structure in the form of oscillations in g(r) as interactions increase

(Γ & 20):

Figure 1.2 : Simulation data on g(r) (r̄ = r/a) for κ = 0. More structure becomes
evident as Γ increases. Figure from [7]

We now have everything we need to calculate the change in interaction energy due

to the quench; from Eq. 1.5 we have:
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Uf − Ui
N

=
3

2

∫ ∞
0

(gf (r̃)−gi(r̃))V (r̃)r̃2dr̃ =
3

2

e2

4πε0a

∫ ∞
0

(gf (r̃,Γf , κf )−1)
exp[−κf r̃]

r̃
r̃2dr̃

(1.6)

where subscript i (f) refers to the pre(post)-equilibration values, and I’ve inserted

gi = 1 to reflect the lack of correlations immediately after the quench. By conservation

of energy, we then have:

kBTi − kBTf =
e2

4πε0a

∫ ∞
0

(gf (r̃,Γf , κf )− 1)
exp[−κf r̃]

r̃
r̃2dr̃ (1.7)

which can then be rearranged to yield:

∫ ∞
0

(geq(r̃,Γf , κf )− 1)
exp[−κf r̃]

r̃
r̃2dr̃ = Γ−1i − Γ−1f (1.8)

Solutions of the integral in Eq. 1.8 over equilibrium pair-distribution functions

have been tabulated in MD simulations [12], and these can be used to determine Γf

from Eq. 1.8 for a known Γi. The integral is negative for all geq, and therefore Γf < Γi,

meaning that the quench results in heating, as expected.

For our experiment, Γ−1i can be neglected due to the low initial temperature before

equilibration. In this situation, Eq. 1.8 can be solved to give Γf (κf ), i.e., the post-

equilibration value of Γ is uniquely determined by κf ! This is no coincidence, but

rather a specific example of a general phenomenon in Yukawa OCPs, which is that

all dynamics and physical properties are expected to be universal in κ when units are

scaled appropriately (e.g. length by a). To see why this is the case, we can consider

the Hamiltonian of the Yukawa OCP:

H =
∑
i

p2i
2m

+
∑
i 6=j

1

2

e2

4πε0rij
exp[−rij/λD] (1.9)
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Defining the plasma frequency ωpi =
√

ne2

mε0
and scaled momentum p̃ = p

maωpi
we can

rewrite Eq. 1.9 as:

H =
1

2

e2

4πε0a

(∑
i

3p̃2i +
∑
i 6=j

exp[−κr̃ij]
r̃ij

)
(1.10)

Clearly, e2

4πε0a
is the proper energy scale for the system (note that this is also the factor

used in scaling the thermal energy when moving from Eq. 1.7 to Eq. 1.8). Defining

H̃ = H
e2/4πε0a

, we have

H̃ =
1

2

(∑
i

3p̃2i +
∑
i 6=j

exp[−κr̃ij]
r̃ij

)
(1.11)

which we’ll call the “scaled” Hamiltonian (note that if the “Einstein frequency” (ωe =

ωpi/
√

3) is used, the prefactor of 3 on the momentum term vanishes. But, we will

rescale by ωpi in this thesis).

The form of Eq. 1.11 clearly demonstrates that when units are scaled appropri-

ately, the Hamiltonian for a set of particles with momenta {pi} (if the system is

thermalized, this can be taken from a maxwell-boltzmann distribution) and interpar-

ticle distances {rij} (which can be taken from g(r)) depends solely on κ. Our study

of DIH in a UNP then, is a test of this general principle applied to the dynamics of

a plasma after a rapid quench to κf .

In this thesis, we compare our experimental results to Molecular Dynamics (MD)

simulations, which propagate Hamilton’s equations of motion using Eq. 1.11 for a set

of particles with {p̃i(t = 0) = 0} (i.e., setting the initial temperature to zero) and a

uniform unweighted set of {r̃ij(t = 0)} (reflecting the initial lack of correlations in

the ultracold gas). The kinetic energy (in scaled units, Γ−1(t)) is then determined by

the Hamiltonian, which can be directly compared to our temperature measurements.
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The details of the comparison are discussed in Chapter 3.

If our hypotheses are correct; namely, that UNPs realize the Yukawa OCP model

and that, therefore, the equilibration dynamics should scale with κf , we should ob-

serve the following results:

• After a sufficient “equilibration time” teq, the measured value of Γ in both the

simulation and experiment should match that predicted by Eq 1.8

• The equilibration process observed in the experiment for a given κf (i.e. the

dependence of Γ−1 on ωpit) should match the MD simulation data taken at κf ,

regardless of the actual n and Te which led to κf . This could be demonstrated by

showing that data taken at dramatically different n and Te, but with comparable

κf , collapse onto the curve from the MD simulation.

In Chapter 3 we present our results from the MD simulations and the UNP ex-

periment which verify these hypotheses.

1.4 Roadmap

Chapter 2 will briefly touch on the history of UNPs and why they are a good system

for studying the dynamics of strongly coupled Yukawa systems. I’ll also discuss how

we generate UNPs and use laser-induced fluorescence to measure n and Ti.

In Chapter 3, I present our experimental study of DIH in a UNP. As demonstrated

in the previous section, when units are scaled appropriately (i.e. time by ω−1pi , energy

by e2

4πε0a
, etc.), the equilibrium temperature (Γ−1eq ) of the system should be uniquely

determined by κf via Eq. 1.8. Moreover, the evolution of the system towards that

equilibrium temperature should also be uniquely determined by κf . We demonstrate

these features by measuring the temperature evolution of UNPs immediately after
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photoionization and comparing our data to MD simulations. We vary n and Te over

orders of magnitude and verify that when the resulting Ti vs t curves are scaled

appropriately (i.e. they become Γ−1i vs. ωpit curves), plasmas of equivalent κ match

the scaled curves from the MD simulations. We also verify that the final temperature

matches that predicted by Eq. 1.8.

Kinetic energy oscillations (KEOs) occurring at 2ωpi are also observed in both

the simulations and the data, indicating potential coupling to collective modes. The

scaling of the KEOs is also shown to depend only on κ.

Finally, in Chapter 4, the utility of the universality is demonstrated by using the

MD simulation to accurately measure the density from experimental DIH measure-

ments.
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Chapter 2

Ultracold Neutral Plasmas

Ultracold neutral plasmas (UNPs) have been a topic of interest since they were

first created at NIST in 1999 by photoionizing a laser-cooled gas of Xenon atoms,

with the photoionization laser tuned just above the ionization continuum. [16] UNPs

can also be generated through spontaneous ionization of a dense cloud of Rydberg

states [34, 33, 6] or by the photoionization of molecules seeded in a supersonic molec-

ular beam. [27] In our lab, we directly photoionize a laser-cooled gas of Strontium

atoms.

Interest in UNPs mostly stems from the fact that their ion component is strongly

coupled even after equilibration (Γeq ∼ 3, see Chapter 3). Thus far, UNP experiments

at Rice and elsewhere have been conducted at n = 1014 − 1017m−3 (yielding Ti =

0.4 − 4 K for Γ = 3) and Te = 10 − 500 K, yielding κ ∼ 0.1 − 0.6. This puts them

squarely in the classical (i.e. kBTe > Ef , where Ef is the Fermi energy) strongly

coupled plasma (SCP) regime.

As discussed in Chapter 1, the dynamics of SCP systems are determined by Γ

and κ. Therefore, UNPs can be used to study physics in plasmas of similar Γ and κ,

even if the densities and temperatures of those plasmas differ dramatically from UNP

densities and temperatures. In fact, SCPs that exist in nature, such as the cores of

gas giant planets and white dwarf stars, and in laboratory systems, such as inertial

confinement fusion (ICF) experiments, tend to have densities greater than 1023m−3

and temperatures greater than 107 K (see Fig. 1.1). By the principal of universality,



13

the dynamics of UNPs can be generalized to these interesting systems to the extent

to which they are also classical Yukawa Plasmas (for example, electron degeneracy

must be taken into account in white dwarf systems and some ICF experiments).

UNPs have advantages over those systems for studying the physics of strongly

coupled plasmas for a few reasons. First, the timescale of the ion dynamics in SCPs

is set by ω−1pi , which is ≤ 1 ps in the astrophysical and ICF plasmas, as compared to ∼

100 ns−1µ s in UNPs. The longer timescale makes the system more amenable to time

resolved measurements of system dynamics. Second, tools often used in the atomic

physics community, such as optical pumping and laser-induced fluorescence imaging,

can easily be applied to UNP systems. These tools have already been used to study

the expansion of a plasma into vacuum [18], ion temperature evolution [5, 2, 23], ion

acoustic waves [4], and collision rates [1]. In the future, there is hope that laser cooling

can be implemented in UNP systems, which should push UNP research deeper into the

strongly coupled regime [31], although this has not yet been realized experimentally.

2.1 Experimental Details

2.1.1 Cooling, Trapping, and Photoionizing Atoms

Before moving into recent DIH studies we will briefly describe the experimental ap-

paratus, a diagram of which can be seen in Fig. 2.1, the plasma diagnostic tech-

niques, and the molecular dynamics simulation techniques. We start with a magneto-

optical trap of 88Sr atoms, which operates on the dipole allowed 1S0 →1P1 transi-

tion at 461 nm (∆MOT = −100 MHz). The cooling transition has a small branching

ratio (10−5) into the 5s4d1D2 state, which decays into the triplet manifold to ei-

ther (5s5p)3P1 or (5s5p)3P2. The former state decays back down into 1S0 at a rate
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Γ = 7.5 kHz, while the latter is a long-lived (∼ 500 s for a sample at 0 K, ∼ 100 s at

room temperature due to blackbody radiation [37]) meta-stable state. Atoms falling

into this state represents a loss channel for our trap. If we want, we can bring these

atoms back into the MOT with 481 nm light, which couples the (5s5p)3P2 state to

the (5p2)3P2 state, from which the atom can then decay into the (5s5p)3P1 state, and

then back into the 1S0 state. Fig. 2.2 illustrates the atomic Sr level diagram, along

with the decay and repump channels.

Figure 2.1 : Experimental apparatus for the Plasma Experiment. Zeeman cooled
atoms are trapped using a MOT consisting of Anti-Helmholtz coils and 6 detuned
laser beams. Plasmas are generated after turning off the MOT by applying intense
pulses of resonant 461 nm light (to bring atoms from 1S0 to 1P1), which we call the
“push beam”, and 405-413 nm light (for photoionization from 1P1), which we call
the “photoionizing beam”. Ions are imaged either through absorption or fluores-
cence imaging via the Sr+ transition at 422 nm (see Fig. 2.3) onto the ICCD camera.
Adapted from [36]

The trap typically contains either 1 or 5 billion atoms, depending on whether or

not we choose to repump the (5s5p)3P2 atoms. The trapped atoms have a gaussian
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Figure 2.2 : Sr Level Diagram including repumping. Solid lines indicate laser-coupling
between states, while dashed lines indicate decay channels.

density profile n(r) = n0exp(−r2/2σ2
MOT ) where σMOT = 1 mm and n0 is on the order

of 1016m−3, and a temperature TMOT ∼ 10 mK. After the MOT is loaded, the coils

are turned off so as not to affect the subsequent plasma dynamics. The beams are

also turned off and the atoms ballistically expand into vacuum for t & 500µ s before

photoionization.

Photoionization is accomplished through two pulsed beams: a 461 nm beam op-

erating on the cooling transition which we call the “push” beam and an “ionization”
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beam tunable from 405− 413 nm which brings atoms from 1P1 to the continuum (the

minimum wavelength to ionize from the 1P1 state is ∼ 413 nm). The former is a

pulse-amplified CW laser while the latter is a pulsed dye laser. Both are amplified by

dyes pumped with 10 ns pulses of 355 nm light from the 3rd harmonic of a Nd:YAG

laser. The tunability of the ionization laser comes from a diffraction grating in a

cavity which controls the wavelength the pumped dye emits. This is what allows for

control of Te, as excess ionization energy is converted to electron energy. The plasma

retains the same density profile as the MOT, with a peak density determined by the

ionization fraction, which can be adjusted by changing the power of the ionization

beam. The density can also be changed by allowing the MOT to expand for a longer

period of time before applying the photoionization pulses.

2.1.2 Plasma Diagnostics: Temperature and Density Measurement

Unlike alkali atoms which, when ionized, have closed shells much like noble gases, al-

kaline atoms such as Sr+ have an outer shell electron, which therefore has hydrogenic

optical excitations. The principal transition of Sr+ from 2S1/2 to 2P1/2 has a wave-

length of 422 nm (see Fig. 2.3) and a natural linewidth of γ0 = 2π × 20.21 MHz. [35]

Our main diagnostic tool is laser induced fluorescence (LIF) from a laser tuned near

this wavelength. The ions scatter photons from the beam, some of which are then col-

lected and imaged through a 1:1 relay onto an intensified CCD camera (ICCD) with

pixel width 12.7µm. Pixels are subsequently binned (4×4 binning) into “superpixels”

with a width of 50.7 µm.

The LIF beam is turned on for 2µs, during which the ICCD collects photons for a

variable “gate width” which starts at the beginning of the pulse and can be set to last

anywhere from 30 ns up to the full 2µ s of the LIF pulse. This minimum gate width of
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30 ns determines our temporal resolution. There is some leakage (1/14 branch ratio)

into the dark 42D3/2 state (Fig. 2.3), however, as long as the gate width is short

enough such that each ion scatters ∼1 photon during the gating, this is not an issue.

During our imaging process each ion scatters a photon roughly every 40 ns, so as long

as the gate width is not significantly longer than that we need not consider effects

due to optical pumping into the dark state.

5S1/2

5P1/2

5P3/2

p

408nm422nm

1092nm

4D3/2

4D5/2

1004nm

1033 nm

Figure 2.3 : Sr+ level diagram. We image on the 422 nm transition. The branching
rate for decay to the “dark” 4D3/2 state is 1/14 (i.e. one in 14 ions excited to the
5P1/2 state decays to the dark state)

Since plasma dynamics depend strongly on density, we want to avoid mixing in

signal from too large of a spread in density along the unresolvable camera axis. We do

this by passing the LIF beam through a 1 mm slit along the camera axis (for typical

size σ = 1 mm, the density varies by 1 − e−1/8 = 12% along the camera axis), see

Fig. 2.4. This ensures that each pixel contains information from a fixed density (up

to the spatial resolution of the camera), even if that density depends on the pixel

(e.g. the center pixel will correspond to a higher density than the one 10 pixels right
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of center, assuming the plasma is centered on the center pixel). By scanning ∆p, the

detuning of the LIF beam from the imaging resonance, we acquire frequency resolved

images (“LIF images”) from which density and temperature can be determined.

Figure 2.4 : Diagram illustrating LIF Image acquisition. The beam is passed through
a slit to avoid mixing in signal from low density regions on the vertical extents of the
plasma.

Consider the LIF signal for frequency ν from a plasma of density n(x, y, z) acquired

during a gate-time dt. For the pixel located at (x, y) (z being the camera axis) the

signal contribution from the box defined by (x, y, z) and (x + ∆x, y + ∆y, z + dz),

where ∆x and ∆y are the pixel widths in x and y, is:

dS(x, y, z, dt) = Cγ0dtn(x, y, z)∆x∆ydzfexc(ν) (2.1)

This is simply the total number of photons emitted during time dt from the region

(Nphot = γ0dtNRegfexc(ν), where NReg = n(x, y, z)∆x∆ydz is the number of atoms in
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the region and fexc(ν) is the ν dependent steady-state fraction of ions in the excited

state) multiplied by a calibration factor C = fcaptCP→S where fcapt is the fraction

of emitted photons captured by the camera (this depends on the solid angle of the

camera and the spatial pattern of the emission from the excited atoms) and CP→S is

the photon to signal conversion factor.

The tricky part is figuring out what exactly fexc(ν) is. For fixed detuning δ = ν−ω,

where ω is the resonance frequency for the LIF transition, an infinitely narrow laser,

and stationary atoms, we can solve the optical Bloch equations to find:

fexc(δ, ~r) =
s(~r)/2

1 + s(~r) + 4δ2

γ20

=

(
γ0s(~r)

8
√

1 + s(~r)

)
γeff

γ2eff/4 + δ2
(2.2)

where γeff = γ0
√

1 + s(~r) and s(~r) = I(~r)/Isat is the “saturation parameter, with

I(~r) the intensity of the laser and Isat the saturation intensity of the LIF transition.

However, we must factor in frequency broadening from both the laser’s spectrum

(which we assume to be lorentzian centered at δ = 0 with width γL) and from the

doppler-broadening due to the atomic motion (we assume thermalization, so this is

a gaussian) centered at δc(~r) = vc(~r)/λ where vc(~r) is the bulk motion of the atoms

along the laser axis. Taking these broadenings into account gives:

fexc(δ, ~r) =

(
γ0s(~r)

8
√

1 + s(~r)

)[
γeff

γ2eff/4 + δ2
◦ γL
γ2L/4 + δ2

◦ 1√
2πσf

exp

(
−(δ − δc(~r))2

2σ2
f

)]
(2.3)

where the ◦ indicates convolution with respect to δ, σf is the doppler broadened

frequency width, and it’s written so the convolutions in the square bracket are of

normalized distributions.

Now let’s consider the total signal for pixel x, y. This will be Eq. 2.1 integrated
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over z and δ:

STot(x, y, dt) = Cγ0dt∆x∆y

∫ ∞
−∞

∫ z=d/2

z=−d/2
dδdzn(~r)fexc(δ, ~r) (2.4)

where d is the length of the imaging slit (Fig. 2.4). This simplifies dramatically when

we consider that the δ integral is over a convolution of three normalized spectra,

which by definition will yield 1. Thus, Eq. 2.4 simplifies to

STot(x, y, dt) = Cγ0dt∆x∆y

∫ d/2

−d/2
dzn(~r)

(
γ0s(~r)

8
√

1 + s(~r)

)
(2.5)

To go further, we use the fact that intensity profile of the laser is gaussian with

1/e2 widths wz and wy (x being the laser axis): I(y, z) = I0 exp(−2y
2

w2
y
− −2z2

w2
z

). We

also have wz � d/2 (for our system, d/2 = 0.5 mm and wz = wy = 2.5 mm), which

allows us to take s(~r) terms outside of the integral over z, thus turning Eq. 2.5 into:

STot(x, y, dt) = Cγ0dt∆x∆y

 γ0s0 exp(−2y2/w2
y)

8
√

1 + s0 exp(−2y2/w2
y)

∫ d/2

−d/2
dzn(~r) (2.6)

where now s0 = I0/Isat.

We further simplify by assuming that the density profile is also gaussian: n(~r) =

n0 exp(−x2+y2+z2

2σ2 ). Plugging this into Eq. 2.6 gives

STot(x, y, dt) = Cγ0dt∆x∆y

γ0s0 exp(−2y2/w2
y) erf

(
d

2
√
2σ

)
8
√

1 + s0 exp(−2y2/w2
y)

√2πσn0 exp

(
−x

2 + y2

2σ2

)
(2.7)

At this point, we can numerically fit a given image STot to Eq. 2.7 with n0 and σ

as free parameters, as all other quantities are known.
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That takes care of density. As for temperature, we must consider the signal within

a given pixel as a function of frequency. So, where before in Eq. 2.4 we integrated

over z and δ, we now integrate only over z. This makes things look a little more

complicated, since now the convolutions don’t just integrate out to unity. We now

have:

S(x, y, δ, dt) = Cγ0dt∆x∆y

∫ d/2

−d/2
dzn(~r)fexc(δ, ~r) (2.8)

We still have wz � d/2, which allows us to rewrite S(x, y, ν, dt) as:

S(x, y, δ, dt) =

[
Cγ0dt∆x∆y

(∫ d/2

−d/2
dzn(~r)

)]
fexc(δ, ~r) (2.9)

since the only z dependence in fexc(δ, ~r) comes from s0(~r), which is allowed to be

taken outside the integral in the limit wz � d/2. The term in the square brackets

becomes a constant whose magnitude can be calculated assuming we’ve determined

the density n(~r) from the camera measurement as discussed prior. So, I’ll call that

constant A(~r), and therefore we have S(x, y, δ, dt) = A(~r)fexc(δ, ~r). To go further,

we need to take a closer look at the convolutions within fexc(δ). It helps to rewrite

Eq. 2.3 as:

fexc(δ, ~r) = D(~r)fconv(δ, ~r) (2.10)

where D(~r) is the constant term in the parentheses of Eq. 2.3 and fconv(δ, ~r) is the

convolution in the square brackets of Eq. 2.3. Since D(~r) is also a known constant

we can wrap that up into the overall multiplicative factor A(~r), giving S(x, y, δ, dt) =

A(~r)fconv(δ, ~r) with:
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A(~r) = Cγ0dt∆x∆y

(∫ s/2

−s/2
dzn(~r)

)(
γ0s0(~r)

8
√

1 + s0(~r)

)
(2.11)

Now let’s look at the convolutions. First, the convolution of two normalized

lorentzians with widths γ1 and γ2 is just a lorentzian with width γ = γ1 + γ2. So,

fconv becomes:

fconv(δ, ~r) =
γTot

γ2Tot/4 + δ2
◦ 1√

2πσf
exp

(
−(δ − δc(~r))2

2σ2
f

)
(2.12)

where γTot = γ0
√

1 + s0(~r) + γL. We now have a convolution of a gaussian and

lorentzian, which is called a Voigt profile:

V (δ, γ, σ) = L(γ, δ) ◦G(σ, δ) =

∫ ∞
−∞

L(γ, δ − δ′)G(σ, δ′)dδ′ (2.13)

Unfortunately, there is no analytic expression for a Voigt profile. Therefore, our final

expression for the signal in a pixel at (x, y) as a function of detuning δ is

S(x, y, δ, dt) = A(~r)

∫ ∞
−∞

dδ′
γTot

γ2Tot/4 + (δ − δ′)2
1√

2πσf
exp

(
−(δ′ − δc(~r))2

2σ2
f

)
(2.14)

with A(~r) given by Eq. 2.11.

The shift in the center velocity of the gaussian distribution due to bulk ion motion

δc(~r) is a known quantity, as it stems from the spherically symmetric expansion of the

plasma driven by the electron thermal pressure [36]. Therefore, the only unknown

in Eq. 2.14 is σf , the doppler broadened spectral width due to the thermal velocity

distribution (σv = σfλ, where σv is the thermal spread in velocities), which is related

to temperature through σv =
√
kBT/m.

In principle, one could fit a measured camera signal S(x, y, δ, dt) to Eq. 2.14 with

σf as a fit parameter for every pixel and determine a “local” temperature measurement
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T (x, y). However, this is very unreliable, as the signal within one pixel is small enough

to be overwhelmed by statistical fluctuations. Moreover, the local temperature T (x, y)

only varies weakly with n (TDIH ∝ n1/3 and ωKEO ∝
√
n). Thus, we can sum together

pixels corresponding to regions of the plasma with similar density to overcome the

statistical fluctuations to measure T , the temperature in the center of the plasma. For

the DIH data presented in this thesis, we’ve considered a 20 × 21 superpixel region

centered at the plasma center as determined by the fit to nareal, corresponding to

1 × 1.05 mm. The smallest plasmas studied in the thesis have widths of σ = 1 mm,

therefore the maximum density fluctuation over the sample is ∼ 1−exp(−.52) = 22%.

This leads to a maximal fluctuation of 8% in TDIH and 11% in ωKEO over the region

considered.

Naively, this sort of sum would look like:

Sreg(δ, dt) =
10∑

i=−10

10∑
j=−10

S(xi, yj, δ, dt) (2.15)

where we then fit Sreg to Eq. 2.14 to determine T . However, this procedure will yield

a drastic over-estimation of the temperature, as the radially dependent expansion

velocity gets mixed in via the i terms. This is because of the ~r dependence in δc(~r) in

Eq. 2.14: δc will vary along x, the axis of the laser. Effectively, you wind up summing

21 spectra, all of which have different center frequencies. To account for this, we need

to consider each column separately:

Si(xi, δ, dt) =
10∑

j=−10

S(xi, yj, δ, dt) (2.16)

where then each column’s signal Si(xi, δ, dt) is fitted to Eq. 2.14 for σf . These 21

temperature measurements, Ti, are averaged to determine T . The standard deviation

of Ti becomes our statistical error.
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Fig. 2.5 shows the severity of the error introduced by fitting Eq. 2.15 for T . The

magenta curve is the sum of a 20×15 superpixel grid while the blue, red, and green

curves are spectra from a given column of superpixels. Clearly, the magenta curve is

wider than the curves from the single superpixel regions: this is due to this convolution

of expansion and thermal spread in velocity. A proper temperature measurement from

averaging the fits from the 15 columns yields T = 1.07 K, while fitting the magenta

curve yields T = 2.13 K, obviously a huge difference!
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Figure 2.5 : Left: Plasma image with analysis regions. This is the sum of the
“stacked” images (i.e. the images at all the different detunings are summed to-
gether to create the plasma image). Orange arrows indicate the expansion velocity.
Right: Spectra from summing the signal within the corresponding regions for each
image in the “stack”, normalized such that the integral of each spectra with respect
to frequency is constant. The effect of the expansion is clearly demonstrated: the
whole red spectrum is redshifted due to the expansion driven bulk motion towards
the laser. Vice versa for the blue. The green is roughly centered at zero, as the center
of the plasma is unaffected by the expansion. The magenta spectra corresponding to
the wide region illustrates the broadening effect of the expansion, demonstrating the
need for regional analysis.
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Chapter 3

Disorder Induced Heating

Here we present the results of our study of the quench dynamics of a Yukawa OCP

resulting from fast photoionization of an ultracold neutral gas. This is also known as

“Disorder Induced Heating”, or DIH, as touched on in Chapter 1. The structure is

as follows:

• Discuss previous studies of DIH and place our work in that context

• Introduce Molecular Dynamics (MD) simulations of DIH at 10 distinct values

of κf .

• Discuss our experimental study of DIH in detail.

• Compare our experimental study to the MD simulations.

3.1 Previous Studies of DIH

As touched on in Chapter 2, some studies of DIH have already been conducted using

UNPs. DIH was theoretically predicted soon after the advent of UNP [9, 29], and

was first observed experimentally at Rice in 2004 [5, 17]. In that study, Ti(t) was

measured by scanning the frequency of a laser imaged directly onto the camera after

passing through the plasma; the plasma profile was reconstructed from the resulting

absorption image. This is somewhat inferior to the LIF images we use in this thesis:

since the beam passes through the whole plasma (as opposed to through a slit, like
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the LIF beam), the contributions to the signal from different density components

along the beam get convolved into the image, which can obstruct measurements of

DIH, as the process is density dependent. In addition, expansion velocity along the

beam axis cannot be separated from thermal velocity, as it can in LIF images. Signal

to noise of the absorption image is also worse due to intensity fluctuations within the

imaging beam.

Nevertheless, they were able to successfully take these effects into account to

obtain measurements of Ti(κ) which agreed pretty well with the values predicted

from theory (Eq. 1.8). They also observed oscillations in Ti, which we term “Kinetic

Energy Oscillations” (KEOS), occurring at roughly 2ωpi. These results are reproduced

in Fig. 3.1. They also qualitatively observed an increase in the damping of these

oscillations with κ.

Figure 3.1 : 2004 DIH study. Both data sets are taken from the same plasma; the
red data is taken from the central region r < 0.9σ, where σ is the gaussian width
of the plasma, while the blue is taken from the outer wing of the plasma r > 1.48σ.
The frequency of the oscillation increases with density, as expected given the scaling
of ωpi ∝

√
n. Adapted from [5].

DIH, and the KEOs inherent to it, are a specific example of the heating which

occurs when ions respond to a rapid increase in interaction energy by developing



27

correlations [8]. Interest in these equilibration phenomena was initiated by the gen-

eration of non-equilibrium plasmas from short-pulse laser irradiation of solid targets.

However, such studies were limited to simulations as the short time and length scales

associated with these high energy density materials do not lend themselves to easy

diagnostics [14, 10, 25, 26, 32, 38]. As discussed in Chapter 2, these limitations do

not apply to UNPs, making them a useful tool to study this phenomenon. DIH is also

important in electron beam studies, as it provides the ultimate limit on how bright

(brightness is inversely proportional to temperature) the beam can be. [22]

KEOs were further explored in a later study by a similar experiment at BYU in

2011. [2] They experimentally determined when the initial peak in the kinetic energy

occurred (tDIH) and determined a “measured” plasma frequency (ωDIH) based off

the assumption that the frequency of the KEOs was 2ωpi (i.e. ωDIH = π/(2tDIH)).

Comparing this with an independent measurement of the plasma density, and thus

of ωpi, they observed that ωDIH approached ωpi as κ → 0, however, as κ increased,

tDIH became increasingly “late”, resulting in a decrease of ωDIH with κ. This was

further confirmed qualitatively by MD simulations, however, the experimental results

were not directly compared to the simulations. The results of the MD simulations are

reproduced in Fig. 3.2. The group conducted a later study which measured ΓDIH(κ);

this too was shown to agree with Eq 1.8 (Fig. 3.3). [19]

In summary, previous studies have:

• Confirmed the scaling of ΓDIH with κ predicted from Eq. 1.8 [5, 19]

• Observed KEOs at ωDIH ∼ 2ωpi, with frequency decreasing with κ [5, 2]

• Qualitatively observed an increase in the damping of the KEOs with κ [5]

However, some topics remain unexplored, such as:
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Figure 3.2 : MD results from the 2011 BYU DIH study. The y-axis displays
ωDIH(κ)/2/ωp, where ωDIH is extracted from the tDIH measurements using the sim-
ulation data. As κ → 0, ωDIH/2 → ωp. The oscillation frequency is observed to
decrease with κ. Adapted from [2].

• The dependence of the full ΓDIH(t) curve on κ; previous studies have mostly

focused only on whether the equilibrium temperature matches Eq. 1.8, not on

whether the equilibration process itself matches MD simulations of the plasma

evolution after the quench to κ.

• Similarly, can universality in the equilibration dynamics with κ be demonstrated

over a wide range of n and Te? In other words, when T (t) is plotted in scaled

parameters Γ−1(ωpit), do curves taken at similar κ fall on top of each other,

regardless of the actual values of n and Te leading to that κ? If so, does this

curve match MD simulations taken at that κ?

• What is the mechanism causing KEOs in the first place, and why does the

damping rate of the KEOs increase with κ?
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Figure 3.3 : Results of the 2013 BYU DIH study. The gray line is Eq. 1.8, the dotted
line comes from MD simulations, and the points are data. The results agree with
simulation and theory out to high κ, at which point non-Yukawa OCP physics, such
as three body recombination, begins to effect the dynamics.

The work presented in this thesis addresses the first two of these topics; future

work will focus on the last topic.

3.2 MD simulations

In order to benchmark our experiment, we enlisted the help of Dr. Thomas Pohl

from the Max Planck Institute for Complex Systems to perform MD simulations of

the quench dynamics. Starting with a system of ∼ 4000 uncorrelated ions at zero

velocity, the system is evolved using a leap-frog symplectic integrator technique and

periodic boundary conditions to simulate the equations of motion for the Yukawa

OCP.
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The velocity distributions (in scaled units, ωpia) are recorded every 0.035ωpit, from

which Γ−1(ωpit), the DIH curve, can be recorded. The simulations were performed

at 10 different values of κ, giving us what we’ve termed a “library” of MD DIH

curves (Fig. 3.4). To compare an experimental curve taken at arbitrary κ between

κmax = 0.55 and κmin = 0.12, we interpolate over the 10 library curves.

Figure 3.4 : Library of MD DIH curves plotting average 1D kinetic energy per particle
< KE1D >= m

2
< v2x > vs time. Both axes are in scaled units (< KE1D > scaled by

e2/(4πε0a) = Γ−1, t scaled to ωpit/2π). We interpolate over this library to find the
DIH curve for arbitrary κ.
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3.2.1 Effect of non-thermalization on comparisons between MD Simula-

tions and Experiments

One important fact we observed when examining the MD simulations is that the

ions are not thermalized during the initial stages of DIH, which manifests in a non-

Maxwellian velocity distribution; the real distribution is more peaked and has a longer

tail, as demonstrated in Fig. 3.5 (this feature was also observed in the MD simulations

performed for the BYU experiment [2]). This is reasonable; one would not necessarily

expect an equilibrating system to be thermalized. However, since our experimental

method for measuring temperatures assumes thermalization (see Chapter 2), we must

account for this feature when comparing experimental data to the simulation. If this

feature is not accounted for, the measured temperatures would underestimate the

actual kinetic energy from the MD curves (Fig. 3.7).

We account for this feature by treating the MD data like our real experimental

data. To do this, we must first convert the MD velocity distribution to a doppler

broadened frequency distribution. First, we unscale the distributions in Fig. 3.5 by

multiplying the scaled velocities by aωpi (vreal = vscaledaωpi) using the density, n, of the

experimental data with which we want to compare the MD simulation data. We then

divide by λ to get the doppler broadened distribution (vreal = λδ, so δ = vscaledaωpi/λ).

The doppler broadened distribution is then numerically convolved with a lorentzian,

corresponding to our imaging transition, to obtain the “experimental” spectra:

S(δ, γ) =

∫ ∞
−∞

L(γ, δ − δ′)MD(δ′)dδ′ (3.1)

where MD(δ′) is the doppler broadened frequency distribution from the MD data.

This corresponds to what we would see in our data were we to replicate the MD
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Figure 3.5 : Red: Velocity distribution from the MD Simulations from which the
1D kinetic energy KEDIH can be determined. Green: A maxwellian distribution
with kBT = KEDIH . Comparing the red and green curves clearly illustrates the non-
thermalized nature of the ions during DIH; a lot of energy is contained in the wings of
the distribution (see inset), leading to a narrower profile in the center. Blue: Result
from fitting the MD curve to a maxwellian; clearly, this gives an anomalously low
measurement of the KE (compare to the green curve). We note that the distribution
becomes nearly thermalized at the heating peak (ωpit/2π = 0.25) and subsequently
becomes less thermalized at the heating trough (ωpit/2π = 0.5). After sufficient time,
the distribution fully thermalizes (ωpit/2π = 2.75)

simulation in our apparatus. We then determine the MD “temperature” by fitting the

numerically convolved MD data using Eq. 2.14; this can then be directly compared

to the temperature we measure in our experiment. The process of unscaling and

convolving the MD data is diagrammed in Fig. 3.6.

Another interesting feature observed in the MD simulations is the long timescale

on which Γ evolves to the value predicted by Eq. 1.8 (Fig. 3.7). Unfortunately, we

cannot observe this behavior clearly in our experiment since other dynamics, such as
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Figure 3.6 : Unscaling and convolution procedure for a given MD Distribution. Top
Left: The initial scaled MD distribution. Top Right: The unscaled MD Distribution
for n = 1015m−3. Bottom Left: The doppler broadened MD distribution. Bottom
Right: The convolved MD distribution (blue) resulting from the convolution of the
doppler broadened MD distribution (red) with the imaging Lorentzian (green).

adiabatic cooling and ion heating due to electron-ion collisions, become important on

that long timescale, masking the effect. [18, 23]

3.3 Experiment and Results

Using the tools and techniques discussed in Chapter 2, we acquire DIH curves over

two orders of magnitude in density (n = 3 × 1014m−3 - 3 × 1016m−3) and an order

of magnitude in electron temperature Te = 50 K - 435 K. This allows us to verify

universality in the quench dynamics over a wide range of experimental parameters.

Figure 3.8 compares DIH curves, in both unscaled and scaled units, for {(n, Te,
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Figure 3.7 : Long timescale DIH evolution for three different κ. Γ−1 approaches
the value predicted by Eq. 1.7, but it takes a surprisingly long time to do so. The
temperature one measures when fitting a maxwellian to the MD curves (i.e. the blue
distributions in Fig. 3.5) is also plotted in order to show the underestimation in energy
resulting from inaccurately assuming thermalization.

κ)}={(3×1014m−3, 105 K, 0.23), (3×1016m−3, 434 K, 0.24)}, where the density is de-

termined by the procedure described in Sec. 2.1.2 (these densities are later confirmed

by an alternate density fitting procedure, see Ch. 4). By the universality hypothesis,

the two scaled DIH curves should match each other despite the vastly different n and

Te, since their screening parameters are nearly identical. Sure enough, although there

is a huge variation in the unscaled curves, the scaled curves fall right on top of each

other. This is a fairly dramatic demonstration of universality in Yuakwa OCPs! This

scaling is very non-trivial, as both the frequency of the oscillations and the kinetic

energy each depend strongly on n and κ (see Fig. 3.4).

Next, we took two sets of data where κ was varied; one where we held Te = 434 K

and adjusted n from 1015m−3 to 3 × 1016m−3 (Fig. 3.9) and another where we held

n relatively constant and changed Te from 60 K to 434 K (Fig. 3.10). In both cases
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Figure 3.8 : DIH curves taken at drastically different n and Te, but nearly identical
κ. Top: DIH curves plotted in unscaled units (Ti(t)). Bottom: DIH curves plotted in
scaled units Γ−1(ωpit/2π). The lines are the temperatures from the MD data, which
are determined by the process discussed in Sec. 3.2.1. Although the timescales and
temperatures in the unscaled plot differ by nearly an order of magnitude, the two
scaled curves are right on top of each other, matching the curve extracted from the
MD simulation for κ.

we observe good qualitative agreement between the MD simulation data and the

scaled experimental data; in the latter case, each experimental curve clearly falls on
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a distinct κ simulation curve.

Figure 3.9 : DIH curves taken at Te = 434 K, but different n, and thus different κ.
Top: Unscaled data. Since the densities vary by a factor of 30, the temperature values
(TDIH ∝ n1/3) and oscillation timescales (ωpi ∝

√
n) differ for each curve. Bottom:

Scaled data. Since the κ values are all relatively similar (κ has a weak dependence
on n, κ ∝ n1/6), the scaled curves are also relatively similar.

Since the agreement was so good qualitatively, we decided to see if we could

make some quantitative comparisons. We are interested in both the strength of the
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Figure 3.10 : DIH curves taken at similar n, different κ. Top: Unscaled data. Since the
densities are similar, the temperature values (TDIH ∝ n1/3) and oscillation timescales
(ωpi ∝

√
n) are similar for each curve. Bottom: Scaled data. We observe remark-

able qualitative agreement between the experiment and the simulation data for each
screening parameter κ.

oscillations and their subsequent decay as a function of κ. In order to approach this

subject, we fit the MD data in the window 0.17ωpit/2π − 0.95ωpit/2π (these limits

are chosen because they provide 3 half oscillations, which we found necessary to
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accurately fit both an amplitude and a decay) to a decaying sinusoidal function:

Γ−1(t) = A exp(−γt) sin(ωt+ φ) + Γ−10 (3.2)

where A, γ, ω, φ, and Γ0 are all fit parameters. The frequency falls with κ (Fig. 3.11),

as observed in the BYU experiment. [2]

Figure 3.11 : ωDIH(κ)/ωpi determined by fitting the MD data from ωpit/2π = 0.17 to
ωpit/2π = 0.95.

We then fit the experimental data in that same window to Eq. 3.2. However, we

found that we needed to fix the frequency to the frequency measured from the fits to

the MD curves, ω(κ) (Fig. 3.11), in order to better constrain the fits to yield accurate

measures of the amplitude and the decay (A and γ, respectively) of the oscillations.

Our results of these fits, along with a comparison to the values extracted from the

fits to the MD data, are shown in Figure 3.12; we observe good agreement between

the experiment and the simulation.
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Figure 3.12 : Top: γ(κ)/(ωpi/2π), Middle: A(κ), Bottom: DIH curve data along with
the corresponding fit to Eq 3.2. Error bars indicate ±1σ uncertainty in the fitting
values. We clearly observe, both from the fits to the simulation and to the experiment,
that the oscillations both start out weaker and decay faster as κ increases.

However, by comparing our data directly to the MD data, we have implicitly

ignored density variations, both known and unknown, in the experiment. Averaging
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together different DIH curves corresponding to different densities will increase the

observed decay rate, as the different curves will dephase due to the density dependence

of the frequency. We now turn to a discussion of these effects.

3.3.1 Effect of Density Averaging

Density fluctuations manifest in two ways in our experiment. First, each plasma

“image” (ex: Fig. 2.5) is actually a compilation of LIF images of ∼ 1000 plasmas.

Ideally, all of these plasmas would have the same size, density, electron temperature,

etc. However, there is some natural shot to shot fluctuation in all of these parameters.

We believe our shot to shot density distribution to be a normal distribution with a

standard deviation somewhere between 10% and 20% of the mean density. Second,

our plasmas inherit the gaussian spatial distribution of the MOT, i.e., they have non

uniform density. We look at temperature data from a 1σ × 1σ region around the

center of the plasma (see Chapter 2). The fluctuations in density within this region,

in addition to the unresolvable fluctuations along the 1 mm slit, form another source

of density fluctuations.

Since the frequency of the KEOs depends on density through ωpi, averaging in

different density components results in damping of the KEOs through dephasing.

Fig. 3.13 shows how the dephasing due to the different types of density fluctuations

affects the predicted MD DIH curves. Clearly, our main source of density fluctuation

dependent dephasing is due to the shot to shot fluctuations, which unfortunately we

currently have no control over. The dephasing becomes quite pronounced after a

couple of oscillations, which is why we restricted the fits in the previous section to

the window ωpit/2π = 0.17 to ωpit/2π = 0.95.

Therefore, in order to accurately compare our experimental results to the MD re-
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Figure 3.13 : Effect of Density averaging on DIH curves for κ = 0.12. “1 Reg” refers
to a DIH curve where the only density variations considered are due to the slit and
the averaging along the y-axis of the image perpendicular to the imaging beam axis.
“21 Reg” includes the averaging from considering multiple regions along the imaging
beam axis. The percentages refer to the standard deviation of the shot to shot density
distribution, which is assumed to be normal (0% unless indicated otherwise). The
shot to shot fluctuations clearly dominate the dephasing, and become very effective
at 20% after just one oscillation. This is why we focus only on the first oscillation
and a half in our analysis.

sults, we must factor in these density fluctuations. We do so by fitting the theoretical,

density fluctuation dependent, MD curves to a decaying sinusoid in the same time

window in which we fit our data. Since the magnitude of the shot to shot density

fluctuations is unknown, while the averaging over regions is always constant, we fit

the MD data corresponding to 0%, 10%, and 20% density fluctuations, in each case
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averaging over the 21 regions (i.e., the yellow, purple, and green curves in Fig. 3.13).

The results are displayed in Figure 3.14. The trend in the variation of amplitude and

damping with kappa matches between theory and experiment. Given the good agree-

ment overall between numerical simulation and the data for describing KEOs and

DIH, we interpret Figure. 3.14 as placing an upper limit on our shot-to-shot density

fluctuations at about 10%.

3.4 Future Work

Figures 3.8 and 3.10 show that we have achieved our goal of demonstrating univer-

sality in the post photoionization quench from κ0 = ∞ to κ. However, we still have

a mystery: what is the connection between the equilibration process (DIH) and col-

lective modes (KEOs)? Clearly, these oscillations have a strong dependence on κ, as

shown in Figure. 3.12. Perhaps this is a clue pointing us towards the source of the

KEOs?

Indeed, a conceptual picture where the KEOs emerge from the ions overshooting

their equilibrium positions during the initial propulsion away from their nearest neigh-

bors, has some allure. In this picture, one would expect the oscillations to weaken

with κ, as the electrons become more effective at screening the ion-ion interactions

which lead to the initial overshoot and subsequent pull-back. We intend to further

examine the underlying MD data in order to determine attributes of the KEOs, such

as their mode structure in k-space, and see whether or not they can provide further

clues towards the source of these oscillations, which are ubiquitous in plasma equili-

bration phenomena. [38, 26, 30, 28, 5, 2]. We will also further explore why it is that

the oscillations damp more rapidly as screening increases.



43

Figure 3.14 : Blue: fit to MD curve with 0% standard deviation in density, Red:
10%, Green: 20%. Error bars indicate ±1σ uncertainty in the fitting values. The
data is still a reasonable match to the curves, as it was in Fig. 3.12, but the additional
uncertainty makes it more difficult to make quantitative comparisons.
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Chapter 4

Using Universality as a precision probe of UNP

Density

In the previous chapter, we demonstrated the universality of DIH with respect to κ

over a wide range of n and Te when temperatures and times are scaled appropriately.

In this chapter, we demonstrate how universality can be inverted to measure n given

a known κ and a DIH curve. We will also compare and contrast this method of mea-

suring n to the method discussed in Chapter 2, which used the frequency-integrated

LIF signal to determine n.

4.1 Method

We observed in the previous chapter that there is a 1:1 correspondence between κ

and a DIH curve when T and t are scaled to Γ−1 = (kB/(e
2/4πε0a))T and ωpit,

respectively. Both of the scaling factors depend solely on n. Thus, given a known Te

and an experimental DIH curve in unscaled units (T (t)), one can use the following

iterative fitting process to determine n:

• Pick an initial n. From this n and the known Te, calculate κ.

• Interpolate over the MD library (Fig. 3.4) to determine the corresponding scaled

DIH curve for κ.

• Scale the experimental DIH curve using the n dependent scaling factors.
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• Compare this scaled curve to the MD curve

• Pick a new n and repeat steps 1-4 until the solution converges to the density of

best fit, nfit.

There are many scientific computing tools which can implement these sorts of

methods. We opted to use Matlab’s “nlinfit” function to perform a non-linear re-

gression on the T (t) curve with Te and the imaging parameters (γL, s0) as known

parameters (the former is needed to calculate κ and the latter two are needed for the

numerical convolution of the MD data discussed in Sec. 3.2.1) and n as the only free

parameter. The model “function” used in the regression is simply Γ−1MD(κ, ωpit), the

MD library.

Let’s compare this method of determining n (this will be referred to as the “DIH

method”) to the method discussed in Ch. 2, in which we fit the frequency-integrated

LIF signal to Eq. 2.7 (this will be referred to as the “camera method”). Utilization

of the camera method requires knowledge of a lot of parameters:

• C = fcaptCP→S, where fcapt is the fraction of emitted photons captured by

the camera and CP→S is the photon to signal conversion factor. In practice,

this overall calibration factor is determined by calibrating LIF images either to

plasma absorption images or to loss from the MOT [3].

• s0, the saturation parameter at the center of the beam

• wy, the width of the laser beam along the y-axis (the axis perpendicular to both

the slit and the camera axis).

• d, the slit size
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If our knowledge of any of these 5 parameters (fcapt, CP→s, s0, wy, d) is inaccurate,

we will mis-measure n. Moreover, there are some situations in which the fit to Eq. 2.7

fails. For example, we have difficulty fitting when the size of the plasma is comparable

to the field of view.

The DIH method, in contrast, has no dependence on most of these experimental

parameters (the temperature weakly depends on s0 and γL through the numerical

convolution of the MD Data and the convolution of the Doppler broadened width of

the real data). It is much less sensitive to, for example, misalignment of the imaging

beam on the plasma, or on degradation of the camera over time, than the camera

method is.

4.2 Results

Figure 4.1 shows typical results from fitting DIH curves for n over a range of n and Te.

The data fits remarkably well (compare the curve of best fit to the curves of ±10%

uncertainty) for high Te (all but the bottom right plot in Fig. 4.1). In this region, the

non-linear regression determined that the 95% confidence interval corresponded to a

typical density uncertainty of ∼ 5%. At low Te (i.e., high κ), qualitatively the fit is

less impressive: the temperature data, at times, significantly undershoots the curve

of best fit.

The next step was to compare the DIH method to the camera method. In principle,

they should yield the same density measurements assuming that we’ve measured all

the parameters which go into the camera method correctly. Fig. 4.2 plots the ratio

of the two density measurements, nfit/ncamera where nfit is measured using the DIH

method and ncamera is the density measured using the camera method, vs κ for a

wide range of plasma densities. The two agree very well (i.e., the ratio is pretty
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Figure 4.1 : Typical results from fitting DIH curves for n using the MD library. In all
but the bottom right plot, the data matches the curve of best fit very well compared
to the curves corresponding to ±10% variations in n (the red and green curves). The
gray curve corresponds to the MD curve corresponding to the density measured by
the camera method. In the bottom right plot, we observe that the density fit does
not seem to work very well. We attribute this to non-Yukawa OCP physics, such as
three body recombination

constant with respect to κ, and is near unity) up to κ > 0.4, at which point nfit

starts to drop relative to ncamera. In the bottom right DIH curve in Fig. 4.1, this

manifested in temperature measurements which correspond to a density much lower

than that measured by the camera method. In other words, either the camera is

somehow artificially observing a higher density, something is cooling the plasmas, or

our measurement of κ is off somehow, which would cause DIH to be fit incorrectly.

We considered a couple of possible sources of this discrepancy between the meth-

ods:

• Charge Exchanging collisions with ground state atoms : One possible reason
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Figure 4.2 : nfit/ncamera vs κ.

why colder temperatures would be observed is the presence of charge exchange

collisions between hot ions and cold ground state atoms. Population swapping

between ions and neutrals would make the ions colder. However, this seems

unlikely: the typical cross section for such collisions is σcEx ∼ 10−19m−2. This

would give a mean free path of 1/nσcEx = 1640 meters for a ground state density

of n = 6×1015m−3. As this is orders of magnitudes larger than the plasma size,

we can safely discount this possibility.

• Charge Exchanging collisions with rydberg atoms : The cross section for charge

exchange interactions scales as n4
q, where nq is the principle quantum number.

Thus, if there were a large amount of cold rydberg atoms, the charge exchange
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collisions could be effective: for nq = 100, the mean free path is 1/nσcEx =

16µm for n = 6× 1015m−3.

However, the density of rydberg atoms is not nearly that high. Rydberg atoms

are generated in a UNP through a three body recombination process where two

electrons and an ion collide to form one rydberg atom and one electron which

carries the binding energy of the rydberg atom. The rate of TBR events was

determined by Mansbach and Keck using Monte Carlo simulations [20]

RTBR(s−1) = 4.5× 10−21T−9/2e

∫
n2
e(r)ni(r)4πr

2dr (4.1)

Applying this equation for the parameters in the bottom right plot in Fig. 4.1

over a sphere with radius σ/2 centered at the center of the plasma gives a

total rydberg density in that region of nr ∼ 4 × 1012m−3 after 170 ns (the

time of the DIH peak). Calculating the mean free path using this density and

σcEx = 10−11m−2 yields 1/nσcEx = 25 mm, which is still an order of magnitude

larger than the size of the cloud. So, we can also rule out this possibility.

• Uncertainty in the camera measurement : Rydberg atoms which have undergone

l-changing collisions become visible using the LIF transition due to their core

electron [24]. Thus, if there were a large amount of rydberg atoms, the camera

would measure an artificially high plasma density, as we would also mistakenly

be including rydberg atoms, which would explain our observations. However,

we’ve already determined that the rydberg density is around 0.1% of the plasma

density, making this an unlikely source of error.

• Other TBR Effects : TBR also heats the electrons, which would result in ad-

ditional changes in κ beyond the original quenching to κf . The constantly
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changing κ would have unpredictable effects on the DIH curve. We cannot

discount this possibility, however, the Rice group previously determined that

TBR does not heat the electrons much for κ < 0.55 [11], whereas differences in

density measurements are observed at κ ∼ 0.4.

• Uncertainty in κ: The wavelength of the ionization beam, and thus the electron

temperature, is controlled by a grating. We do not continuously monitor the

frequency. It is possible that the calibration to the grating is off, which would

mean that we are not fitting the DIH curve corresponding to the actual κ of the

plasma. This effect would become more significant as the electron temperatures

get lower, which coincide with higher κ, which is where we observe the difference

between the two density measurements. It is also possible that there is some

amplified spontaneous emission (ASE) in the beam; the wavelength of ASE

light is not controlled by the grating, and therefore would change the electron

temperature.

Although we have not yet confirmed what exactly the source of the error is, all of

the explanations listed above point towards any errors being largely confined to the

low Te (high κ) regime. Outside of this regime (e.g. κ < 0.4), errors are minimized,

and we observe a constant 10% difference between the two density measurements.

We attribute this to an error in the camera calibration, as the density fits to DIH are

nearly perfect in this regime (all plots other than the bottom right in Fig. 4.1).
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Chapter 5

Conclusion

In this thesis we’ve studied the dynamics of a rapid quench from a non-interacting

gas to a Yukawa OCP with a controllable screening parameter κf . In particular, we

looked at the evolution of the ion kinetic energy vs time after the photoionization

of an uncorrelated ∼ 10 mK atomic gas. We’ve done this using UNPs, which are a

nearly ideal realization of Yukawa OCPs, as they contain only one positive charge

species (Z = 1) which is much heavier, and thus slower, than the electrons within the

plasma, and they are clearly in the classical plasma regime. We have confirmed that

the quench dynamics are universal in κf when kinetic energy and time are scaled by

e2/(4πε0a) and 2π/ωpi, respectively.

This is a specific example of the general phenomena of universality in a Yukawa

OCP; all dynamics should depend only on κ when the plasma quantities are scaled

appropriately. This powerful tool is what allows plasma researchers to study plasmas

of dramatically different densities and temperatures using the same framework, al-

lowing UNP physics to successfully provide a window into the physics of astrophysical

plasmas and the plasmas produced in inertial confinement fusion experiments. In our

studies of DIH, we varied densities over two orders of magnitude (n from 3×1014m−3

to 3× 1016m−3) and electron temperatures over an order of magnitude (Te from 49 K

to 434 K) and confirmed that all DIH curves collapsed onto the appropriate universal

κf dependent curve taken from MD simulations. We demonstrated one application

of the universal scaling features by inverting them in order to measure the density of
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a plasma with a known Te given a DIH curve.

Having determined that the KEOs observed during DIH are a universal, κ de-

pendent, feature, future work will focus on determining the connection between the

equilibration process and collective modes, which manifests in the KEOs. In particu-

lar, why does increasing κ both reduce the magnitude of the collective behavior and

make it damp more rapidly? Answering these questions will provide more insight into

the general aspects of how collective mode coupling manifests in all strongly coupled

plasma systems.
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Appendices
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Appendix A

Derivation of g(r) and related quantities

For a given model pair-wise potential (e.g. the Yukawa potential for a Yukawa OCP)

v(rij), the effect of the interactions is best accounted for by considering their effect

on the pair distribution function, which is defined as [13]:

g(2)(~r1, ~r2) = V 2P
(2)
N (~r1, ~r2) (A.1)

in terms of the conditional probability function P (2)

P
(2)
N (~r1, ~r2) =

∫
...

∫
PN
N (~r1, ....~rN)d~r3...d~rN (A.2)

which describes the probability density for two particles to be located at fixed points

~r1 and ~r2 while all other particles positions are allowed to vary. This, in turn, is

expressed in terms of the total probability density

PN
N (~r1, ....~rN) =

1

ZN
exp[−βvN(~r1, ...~rN)] (A.3)

where ZN is the partition function (ZN =
∫
...
∫

exp[−βvN(~r1, ...~rN)]d~r1...d~rN) and

vN(~r1, ...~rN) =
∑

i<j v(rij) is the total interaction energy of the system given particle

coordinates {~r1...~rN}. This is interpreted as the probability of simultaneously finding

particle 1 at r1, particle 2 at r2, etc.

In a homogeneous mixture with pair interactions, all dependence on ~r1 and ~r2

comes from the distance r = |~r1 − ~r2|. So, I’ll write g(2)(~r1, ~r2) = g(r). g(r) simply
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reflects how local density near any given particle (taken to be at the origin) is modified

by the correlations: nlocal(r) = g(r)n. For example, in the non-interacting limit

(vN = 0) we have ZN = V N , from which we can obtain P
(2)
N (r) = V −2, and g(r) = 1.

Evaluating g(r) requires deciding on a form for v(rij), such as the Yukawa in-

teraction. Even after deciding on that form, g(r) is often difficult to calculate, as

it is coupled to higher-order correlators (g(3)(rij, rik, rjk), etc.) via the “Yvon-Born-

Green” (YGB) hierarchy, which is similar to the BBGYK hierarchy for the conditional

probability densities. Cutting off the hierarchy becomes difficult in strongly coupled

systems, so we must typically resort to simulations by methods such as Molecular

Dynamics (MD) to determine g(r), as discussed in Section 1.3.

However, once g(r) is determined, all other equilibrium thermodynamic properties

of the system can be derived from it. For example, consider the total energy of the

system. For a non-interacting gas, Ui = 3
2
NkBT . For an interacting gas there are

also contributions to the total internal energy stemming from the interactions. The

total energy can thus be written U = Ui + Uexc where:

Uexc =
1

ZN

∫
exp[−βvN(~r1, ...~rN)]vN(~r1, ...~rN)d~rN (A.4)

Dividing by N , Uexc can be rewritten [13]
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Uex
N

=
1

NZN

∫
exp[−βvN(rN)]

∑
i 6=j

v(rij)d~rN (A.5)

=
1

NV 2

∫ ∫
N2

2
v(r12)

(
V 2

ZN

∫
...

∫
exp[−βVN(rN)]d~r3...d~rN

)
d~r1d~r2 (A.6)

=
N

2V 2

∫ ∫
v(r12)g(~r1, ~r2)d~r1d~r2 (A.7)

=
N

2V 2

∫ ∫
v(r12)g(~r12)d~r1d~r12 (A.8)

=
N

2V

∫
v(r12)g(~r12)d~r12 (A.9)

= 2πn

∫ ∞
0

g(r)v(r)r2dr (A.10)

=
3

2

∫ ∞
0

g(r̃)v(r̃)r̃2dr̃ (A.11)

where I’ve defined r̃ = r/a, and a =
(

3
4πn

)1/3
is the average interparticle spacing

(note: this is the derivation supporting Eq. 1.5 in Chapter 1). Similar expressions

can be found for quantities like the equation of state and the Helmholtz free energy.

For the Yukawa model for describing one-component plasmas (OCP), v(r̃ij) takes

the form:

v(r̃ij) =
(Ze)2

4πε0a

exp[−κr̃]
r̃

(A.12)

and therefore:

βv(r̃ij) =
v(r̃ij)

kBT
= Γ

exp [−κr̃12]
r̃12

(A.13)

where Γ = (Ze)2/4πε0a
kBT

, the “Coulomb Coupling parameter”, is the per-particle ratio of

interaction energy to kinetic energy, and κ = a/λD is the “screening parameter”.

We can then rewrite g(r) for the ions as
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gii(r̃,Γ, κ) = exp

[
−Γ

exp[−κr̃]
r̃

] ∫
V ′ ...

∫
V ′ exp

[
−Γ
∑

i>2,i>j
exp[−κr̃ij ]

r̃ij

]
d~̃r3...d~̃rN∫

V ′ ...
∫
V ′ exp

[
−Γ
∑

i>j
exp[−κr̃ij ]

r̃ij

]
d~̃r1...d~̃rN

(A.14)

where V ′ = 4
3
πN . In the term in the denominator (the partition function) we integrate

over all possible positions of all the ions while in the term in the numerator we allow all

particles except the two fixed at ~r1 and ~r2 to vary and integrate over all those allowed

positions. This allows us to remove the exp
[
−Γ exp[−κr̃]

r̃

]
term from the integration.

We still must leave in terms like r31, r32, rN1, etc. in the integration in the numerator

as ~r3...~rN are allowed to vary.

When gii is written in this way, it is clear that it depends only on Γ and κ as

claimed in the thesis. Therefore, all thermodynamic properties of the system also

depend solely on Γ and κ, as they can be derived immediately from g(r), as was

explicitly demonstrated for Uexc in Eq. A.11.
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